Skip to main content
Log in

Glycerol-based liquid formulation of the epiphytic yeast Hanseniaspora guilliermondii isolate YBB3 with multiple modes of action controls postharvest Aspergillus rot in grapes

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Postharvest loss is a major constraint in the production of grapes, both in terms of quality and quantity. In this study, 33 yeasts were isolated from the fructosphere of grapes and tested for their antifungal activity against Aspergillus spp., which infects grapes during the postharvest stage. The results revealed that the yeast isolate YBB3 exhibited maximum inhibitory effect against Aspergillus spp. in dual plate assay (57% over control). Molecular characterization of YBB3 showed 99.31% identity with Hanseniaspora guilliermondii. Wound site colonization of H. guilliermondii in grape cv. Thompson Seedless showed 80% inhibition of Aspergillus spp. over the control in vitro. YBB3 produced volatile, non-volatile and thermostable compounds, which inhibited the mycelial growth of Aspergillus spp. In addition, YBB3 produced killer toxins, which were identified by the presence of blue colour-stained cells. Moreover, glycerol-based liquid bioformulations of H. guilliermondii (YBB3) showed maximum inhibitory effect against Aspergillus spp. (96%) over the control on inoculated wounded grapes berries. Thus, the yeast isolate H. guilliermondii identified and characterized in this study is worthy of further studies for the sustainable management of Aspergillus rot in grapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadias M, Teixidó N, Usall J, Viñas I (2003) Optimization of growth conditions of the postharvest biocontrol agent Candida sake CPA-1 in a lab-scale fermenter. J Appl Microbiol 95(2):301–309

    Article  CAS  PubMed  Google Scholar 

  • Abdelhai MH, Awad FN, Yang Q, Mahunu GK, Godana EA, Zhang H (2019) Enhancement the biocontrol efficacy of Sporidiobolus pararoseus Y16 against apple blue mold decay by glycine betaine and its mechanism. Biol Control 139:104079

    Article  CAS  Google Scholar 

  • Abeer H, Abd-Allah EF, Al-Obeed RS, Mridha MAU, Al-Huqail AA (2013) Non-chemical strategies to control postharvest losses and extend the shelf life of table grape fruits. Biol Agri Horti 29(2):82–90

    Article  Google Scholar 

  • Apaliya MT, Zhang H, Zheng X, Yang Q, Mahunu GK, Kwaw E (2018) Exogenous trehalose enhanced the biocontrol efficacy of Hanseniaspora uvarum against grape berry rots caused by Aspergillus tubingensis and Penicillium commune. J Sci Food Agric 98:4665–4672

    Article  CAS  PubMed  Google Scholar 

  • Arfaoui M, Vallance J, Bruez E, Rezgui A, Melki I, Chebil S, Sadfi-Zouaoui N, Rey P (2019) Isolation, identification and in vitro characterization of grapevine rhizobacteria to control ochratoxigenic Aspergillus spp. on grapes. Biol Control 129:201–211

    Article  Google Scholar 

  • Brent KJ, Hollomon DW (2007) Fungicide resistance in crop pathogens: How can it be managed? FRAC Monograph No. 1 (Second, revised edition) ed: Croplife International, Brussels, Belgium

  • Cai Z, Yang R, Xiao H, Qin X, Si L (2015) Effect of preharvest application of Hanseniaspora uvarum on postharvest diseases in strawberries. Postharvest Biol Technol 100:52–58

    Article  Google Scholar 

  • Chan Z, Tian S (2006) Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit. Postharvest Biol Technol 39(3):314–320

    Article  CAS  Google Scholar 

  • Chanchaichaovivat A, Ruenwongsa P, Panijpan B (2007) Screening and identification of yeast strains from fruits and vegetables: Potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol Control 42(3):326–335

    Article  Google Scholar 

  • Cordero-Bueso G, Mangieri N, Maghradze D, Foschino R, Valdetara F, Cantoral JM, Vigentini I (2017) Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera fungal pathogens. Front Microbiol 8:2025

    Article  PubMed  PubMed Central  Google Scholar 

  • da Cunha T, Ferraz LP, Wehr PP, Kupper KC (2018) Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum. Int J Food Microbiol 276:20–27

  • Droby S, Wisniewski M, Teixidó N, Spadaro D, Jijakli M (2016) The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol 122:22–29

    Article  Google Scholar 

  • Eckert JW, Ogawa JM (1985) The chemical control of postharvest diseases: subtropical and tropical fruits. Annu Rev Phytopathol 23(1):421–454

    Article  Google Scholar 

  • Fredlund E, Druvefors UÄ, Olstorpe MN, Passoth V, Schnürer J (2004) Influence of ethyl acetate production and ploidy on the anti-mould activity of Pichia anomala. FEMS Microbiol Lett 238(1):133–137

    CAS  PubMed  Google Scholar 

  • Giobbe S, Marceddu S, Scherm B, Zara G, Mazzarello VL, Budroni M, Migheli Q (2007) The strange case of a biofilm-forming strain of Pichia fermentans, which control Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Res 7(8):1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Hua SST, Beck JJ, Sarreal SBL, Gee W (2014) The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res 30 (2):L 71–78

  • Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A (2011) A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. EPPO Bulletin 41(1):65–71

    Article  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agri Food Chem 50(10):2731–2741

    Article  CAS  Google Scholar 

  • Kasfi K, Taheri P, Jafarpour B, Tarighi S (2018) Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Spanish J Agri Res 16(1):e1002

    Article  Google Scholar 

  • Kinay P, Yildiz M (2008) The shelf life and effectiveness of granular formulations of Metschnikowia pulcherrima and Pichia guilliermondii yeast isolates that control post-harvest decay of citrus fruit. Biol Control 45(3):433–440

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhang H, Li P, Apaliya MT, Yang Q, Peng Y, Zhang X (2016) Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biol Control 103:30–38

    Article  CAS  Google Scholar 

  • Lima JRD, Viana FMP, Lima FA, Pieniz V, Gonçalves LRB (2014) Efficiency of a yeast-based formulation for the biocontrol of postharvest anthracnose of papayas. Summa Phytopathol 40(3):203–211

    Article  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167(2):153–160

    Article  PubMed  Google Scholar 

  • Melin P, Hakansson S, Eberhard TH, Schnurer J (2006) Survival of the biocontrol yeast Pichia anomala after long-term storage in liquid formulations at different temperatures, assessed by flow cytometry. J Appl Microbiol 100(2):264–271

    Article  CAS  PubMed  Google Scholar 

  • Melin P, Hakansson S, Schnurer J (2007) Optimisation and comparison of liquid and dry formulations of the biocontrol yeast Pichia anomala J121. Appl Microbiol Biotechnol 73(5):1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Mokhtarnejad L, Etebarian HR, Fazeli MR, Jamalifar H (2011) Evaluation of different formulations of potential biocontrol yeast isolates efficacy on apple blue mold at storage condition. Arch Phytopathol Pl Protec 44(10):970–980

    Article  CAS  Google Scholar 

  • Nadai C, Fernandes Lemos WJJ, Favaron F, Giacomini A, Corich V (2018) Biocontrol activity of Starmerella bacillaris yeast against blue mold disease on apple fruit and its effect on cider fermentation. PLoS ONE 13(9):e0204350

    Article  PubMed  PubMed Central  Google Scholar 

  • Pantelides IS, Christou O, Tsolakidou MD, Tsaltas D, Ioannou N (2015) Isolation, identification and in vitro screening of grapevine yeasts for the control of black aspergilli on grapes. Biol Control 88:46–53

    Article  Google Scholar 

  • Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92

    Article  CAS  PubMed  Google Scholar 

  • Patino-Vera M, Jimenez B, Balderas K, Ortiz M, Allende R, Carrillo A, Galindo E (2005) Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. J Appl Microbiol 99(3):540–550

    Article  CAS  PubMed  Google Scholar 

  • Ponsone ML, Chiotta ML, Combina M, Dalcero A, Chulze S (2011) Biocontrol as a strategy to reduce the impact of ochratoxin A and Aspergillus section Nigri in grapes. Int J Food Microbiol 151(1):70–77

    Article  PubMed  Google Scholar 

  • Pretscher J, Fischkal T, Branscheidt S, Jäger L, Kahl S, Schlander M, Thines E, Claus H (2018) Yeasts from different habitats and their potential as biocontrol agents. Fermentation 4(2):31

    Article  Google Scholar 

  • Saravanakumar D, Ciavorella A, Spadaro D, Garibaldi A, Gullino ML (2008) Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol Technol 49(1):121–128

    Article  CAS  Google Scholar 

  • Senthil R, Prabakar K, Rajendran L, Karthikeyan G (2011) Efficacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions. Phytopathol Mediterr 50(1):55–65

    Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50(3):205–221

    Article  Google Scholar 

  • Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72(10):6716–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49

    Article  CAS  Google Scholar 

  • Suzzi G, Romano P, Ponti I, Montuschi C (1995) Natural wine yeasts as biocontrol agents. J Appl Bacteriol 78(3):304–308

    Article  Google Scholar 

  • Taqarort N, Echairi A, Chaussod R, Nouaim R, Boubaker H, Benaoumar AA, Boudyach E (2008) Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits. World J Microbiol Biotechnol 24(12):3031–3038

    Article  Google Scholar 

  • Wang M, Zhao L, Zhang X, Dhanasekaran S, Abdelhai MH, Yang Q, Jiang Z, Zhang H (2019) Study on biocontrol of postharvest decay of table grapes caused by Penicillium rubens and the possible resistance mechanisms by Yarrowia lipolytica. Biol Control 130:110–117

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27(1):425–441

    Article  Google Scholar 

  • Wisniewski M, Wilson C, Droby S, Chalutz E, El Ghaouth A, Stevens C (2007) Postharvest biocontrol: new concepts and applications. Biological control: A global perspective. United Kingdom, CABI International, 262–273

  • Yang Q, Wang H, Zhang H, Zhang X, Apaliya MT, Zheng X, Mahunu G (2017) Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biol Technol 126:15–22

    Article  CAS  Google Scholar 

  • Zahavi T, Cohen L, Weiss B, Schena L, Daus A, Kaplunov T, Zutkhi J, Ben-Arie R, Droby S (2000) Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel. Postharvest Biol Technol 20:115–124

    Article  Google Scholar 

  • Zhang H, Mahunu GK, Castoria R, Yang Q, Apaliya M (2018) Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends Food Sci Technol 78:180–187

    Article  CAS  Google Scholar 

  • Zhang Q, Zhao L, Li Z, Li C, Li B, Gu X, Zhang X, Zhang H (2019) Screening and identification of antagonistic yeast controlling postharvest blue mold decay of pears and the possible mechanisms involved. Biol Control 133:26–33

    Article  Google Scholar 

  • Zhimo V, Bhutia D, Saha J (2016) Biological control of post harvest fruit diseases using antagonistic yeasts in India. J Plant Pathol 98:275–283

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Plant Pathology, Agricultural College and Research Institute, Madurai, Tamil Nadu, India for providing necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankarasubramanian Harish.

Ethics declarations

Conflict of interest

No funding was obtained for this study. All authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandhini, M., Harish, S., Aiyanathan, K.E.A. et al. Glycerol-based liquid formulation of the epiphytic yeast Hanseniaspora guilliermondii isolate YBB3 with multiple modes of action controls postharvest Aspergillus rot in grapes. J Plant Pathol 103, 1253–1264 (2021). https://doi.org/10.1007/s42161-021-00909-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-021-00909-y

Keywords

Navigation