Skip to main content
Log in

Effects of Standoff Distance on Magnetic Pulse Welded Joints Between Aluminum and Steel Elements in Automobile Body

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

In industrial production, the standoff distance of magnetic pulse welding (MPW) is a critical parameter as it directly affects welding quality. However, the effects of standoff distance on the physical properties of MPW joints have not been investigated. Therefore, in this study, aluminum alloy (AA5182) sheets and high-strength low-alloy steel (HC340LA) sheets were welded through MPW at a discharge energy of 20 kJ, under various standoff distances. Thereafter, mechanical tests were performed on the MPW joints, and the results indicate that there is a significant change in the shear strength of the AA5182/HC340LA-welded joints with respect to the standoff distance. When the standoff distance ranges from 0.8 to 1.4 mm, the strength of the joint is higher than that of the base AA5182 sheet. Microscopic observations were conducted to analyze the interfacial morphology, element diffusion behavior, and microdefects on the welding interface of the AA5182/HC340LA joints. The AA5182/HC340LA joint with a standoff distance of 1.4 mm possesses the longest welded region and the largest interfacial wave. This interfacial wave pattern is suitable for achieving MPW joints with high shear strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Zheng, G., Fan, Z., Zhang, H., et al.: Crashworthiness optimization of steel–magnesium hybrid double-hat-shaped tube. Automot. Innov. 1(3), 247–254 (2018). https://doi.org/10.1007/s42154-018-0033-9

    Article  Google Scholar 

  2. Cui, J., Dong, D., Zhang, X., et al.: Influence of thickness of composite layers on failure behaviors of carbon fiber reinforced plastics/aluminum alloy electromagnetic riveted lap joints under high-speed loading. Int. J. Impact Eng. 115, 1–9 (2018). https://doi.org/10.1016/j.ijimpeng.2018.01.004

    Article  Google Scholar 

  3. Wang, S., Liang, W., Duan, L., et al.: Effects of loading rates on mechanical property and failure behavior of single-lap adhesive joints with carbon fiber reinforced plastics and aluminum alloys. Int. J. Adv. Manuf. Tech. 106, 2569–2581 (2020). https://doi.org/10.1007/s00170-019-04804-w

    Article  Google Scholar 

  4. Meng, Z., Wang, X., Guo, W., et al.: Joining performance and microstructure of the 2024/7075 aluminium alloys welded joints by vaporizing foil actuator welding. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 34(2), 368–372 (2019). https://doi.org/10.1007/s11595-019-2061-7

    Article  Google Scholar 

  5. Rebensdorf, A., Böhm, S.: Magnetic pulse welding—investigation on the welding of high-strength aluminum alloys and steels as well as the influence of fluctuations in the production on the welding results for thin metal sheets. Weld. World 62, 855–868 (2018). https://doi.org/10.1007/s40194-018-0553-2

    Article  Google Scholar 

  6. Lu, H., Zhang, J., Tian, N., et al.: Recycle-friendly aluminum alloy sheets for automotive applications based on hemming. Automot. Innov. 1(1), 70–75 (2018). https://doi.org/10.1007/s42154-018-0012-1

    Article  Google Scholar 

  7. Manogaran, A.P., Manoharan, P., Priem, D., et al.: Magnetic pulse spot welding of bimetals. J. Mater. Process. Tech. 214(6), 1236–1244 (2014). https://doi.org/10.1016/j.jmatprotec.2014.01.007

    Article  Google Scholar 

  8. Geng, H., Xia, Z., Zhang, X., et al.: Microstructures and mechanical properties of the welded AA5182/HC340LA joint by magnetic pulse welding. Mater. Charact. 138, 229–237 (2018). https://doi.org/10.1016/j.matchar.2018.02.018

    Article  Google Scholar 

  9. Kore, S.D., Date, P.P., Kulkarni, S.V.: Electromagnetic impact welding of aluminum to stainless steel sheets. J. Mater. Process. Tech. 208(1–3), 486–493 (2008). https://doi.org/10.1016/j.jmatprotec.2008.01.039

    Article  Google Scholar 

  10. Kore, S.D., Date, P.P., Kulkarni, S.V.: Effect of process parameters on electromagnetic impact welding of aluminum sheets. Int. J. Impact Eng. 34(8), 1327–1341 (2007). https://doi.org/10.1016/j.ijimpeng.2006.08.006

    Article  Google Scholar 

  11. Kochan, A.: Magnetic pulse welding shows potential for automotive applications. Assembly Autom. 20(2), 129–131 (2000). https://doi.org/10.1108/01445150010321742

    Article  Google Scholar 

  12. Kapil, A., Sharma, A.: Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique. J. Clean. Prod. 100, 35–58 (2015). https://doi.org/10.1016/j.jclepro.2015.03.042

    Article  Google Scholar 

  13. Cui, J., Sun, T., Geng, H., et al.: Effect of surface treatment on the mechanical properties and microstructures of Al-Fe single-lap joint by magnetic pulse welding. Int. J. Adv. Manuf. Tech. 98, 1081–1092 (2018). https://doi.org/10.1007/s00170-018-2262-9

    Article  Google Scholar 

  14. Cui, J., Sun, G., Xu, J., et al.: A study on the critical wall thickness of the inner tube for magnetic pulse welding of tubular Al–Fe parts. J. Mater. Process. Tech. 227, 138–146 (2016). https://doi.org/10.1016/j.jmatprotec.2015.08.008

    Article  Google Scholar 

  15. Cui, J., Li, Y., Liu, Q., et al.: Joining of tubular carbon fiber-reinforced plastic/aluminum by magnetic pulse welding. J. Mater. Process. Tech. 264, 273–282 (2019). https://doi.org/10.1016/j.jmatprotec.2018.09.018

    Article  Google Scholar 

  16. Cui, J., Sun, G., Li, G., et al.: Specific wave interface and its formation during magnetic pulse welding. Appl. Phys. Lett. 105, 221901 (2014). https://doi.org/10.1063/1.4903044

    Article  Google Scholar 

  17. Geng, H., Mao, J., Zhang, X., et al.: Strain rate sensitivity of Al-Fe magnetic pulse welds. J. Mater. Process. Tech. 262, 1–10 (2018). https://doi.org/10.1016/j.jmatprotec.2018.06.021

    Article  Google Scholar 

  18. Geng, H., Mao, J., Zhang, X., et al.: Formation mechanism of transition zone and amorphous structure in magnetic pulse welded Al-Fe joint. Mater. Lett. 245, 151–154 (2019). https://doi.org/10.1016/j.matlet.2019.02.118

    Article  Google Scholar 

  19. Geng, H., Sun, L., Li, G., et al.: Fatigue fracture properties of magnetic pulse welded dissimilar Al-Fe lap joints. Int. J. Fatigue 121, 146–154 (2019). https://doi.org/10.1016/j.ijfatigue.2018.12.027

    Article  Google Scholar 

  20. Aizawa, T., Kashani, M., Okagawa, K.: Application of magnetic pulse welding for aluminum alloys and SPCC steel sheet joints. Weld. J. 86(5), 119s–124s (2007). https://doi.org/10.1179/174591907X192230

    Article  Google Scholar 

  21. Broeckhove, J., Willemsens, L.: Experimental research on magnetic pulse welding of dissimilar metals. Masters Thesis, Ghent University, 2010

  22. Aizawa, T.: Methods for electromagnetic pressure seam welding of Al/Fe sheets. Weld. Int. 18(11), 868–872 (2004). https://doi.org/10.1533/wint.2004.3346

    Article  Google Scholar 

  23. Marya, M., Marya, S., Priem, D.: On the characteristics of electromagnetic welds between aluminium and other metals and alloys. Weld. World 49(5–6), 74–84 (2005). https://doi.org/10.1007/BF03263412

    Article  Google Scholar 

  24. Raoelison, R.N., Buiron, N., Rachik, M., et al.: Study of the elaboration of a practical weldability window in magnetic pulse welding. J. Mater. Process. Tech. 213(8), 1348–1354 (2013). https://doi.org/10.1016/j.jmatprotec.2013.03.004

    Article  Google Scholar 

  25. Chen, S., Daehn, G.S., Vivek, A., et al.: Interfacial microstructures and mechanical property of vaporizing foil actuator welding of aluminum alloy to steel. Mater. Sci. Eng., A 659, 12–21 (2016). https://doi.org/10.1016/j.msea.2016.02.040

    Article  Google Scholar 

  26. Wang, S., Zhou, B., Zhang, X., et al.: Mechanical properties and interfacial microstructures of magnetic pulse welding joints with aluminum to zinc-coated steel. Mater. Sci. Eng., A 788, 139425 (2020). https://doi.org/10.1016/j.msea.2020.139425

    Article  Google Scholar 

  27. Shribman, V.: Magnetic pulse welding for dissimilar and similar materials. Paper presented at the 3rd International Conference on High Speed Forming, Institut für Umformtechnik-Technische Universität Dortmund, Dortmund, 11-12 March, 2008. https://doi.org/10.17877/DE290R-13057

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (No. 51975202) and the Natural Science Foundation of Hunan Province (2019JJ30005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyao Li.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Wang, S., Yuan, W. et al. Effects of Standoff Distance on Magnetic Pulse Welded Joints Between Aluminum and Steel Elements in Automobile Body. Automot. Innov. 3, 231–241 (2020). https://doi.org/10.1007/s42154-020-00104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-020-00104-2

Keywords

Navigation