Skip to main content

Advertisement

Log in

Hierarchical copper-1,3,5 benzenetricarboxylic acid-MOF-derived with nitrogen-doped graphene nanoribbons as a novel assembly nanocomposite for asymmetric supercapacitors

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Supercapacitors have been established as promising renewable energy devices in energy storage due to their high power and favorable energy density. In this study, the design of hybrid nanocomposites (copper-1,3,5 benzenetricarboxylic acid-MOF (Cu-BTC MOF)) as active electrode materials and N-doped graphene nanoribbons (N-doped GNR) with unique properties has been analyzed. The results obtained show a relatively high specific capacitance of 2911.11 F g−1 at the current density of 1 A g−1. In addition, the stability of the electrode after 10,000 cycles was obtained by comparing the initial and final capacity, and the results showed that 93.96% of the initial capacity was retained. In an asymmetric supercapacitor, the Cu-BTC MOF/N–doped GNR was the positive electrode, and activated carbon was the negative electrode (ASC). The assembled ASC device afforded an outstanding specific capacitance of 570 F g−1 at the practical current density of 1 A g−1 and the energy density of 79.16 Wh kg−1 at the power density of 527.77 Wkg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moradlou O, Ansarinejad H, Hosseinzadeh M, Kazemi H (2018) High-performance solid state asymmetric supercapacitor based on electrochemically decorated 3D network-like Co3O4 architecture on NiO nanoworms. J Alloys Compd 755:231–241. https://doi.org/10.1016/j.jallcom.2018.04.334

    Article  CAS  Google Scholar 

  2. Ensafi AA, Moosavifard SE, Rezaei B, Kaverlavani SK (2018) Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors. J Mater Chem A 6:10497–10506. https://doi.org/10.1039/c8ta02819b

    Article  CAS  Google Scholar 

  3. Du W, Bai YL, Xu J, Zhao H, Zhang L, Li X, Zhang J (2018) Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J Power Sources 402:281–295. https://doi.org/10.1016/j.jpowsour.2018.09.023

    Article  CAS  Google Scholar 

  4. Yue L, Zhang S, Zhao H, Feng Y, Wang M, An L, Zhang X, Mi J (2019) One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ionics 329:15–24. https://doi.org/10.1016/j.ssi.2018.11.006

    Article  CAS  Google Scholar 

  5. Ping D, Yi F, Zhang G, Wu S, Fang S, Hu K, Xu BB, Ren J, Guo Z (2023) NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J Mater Sci Technol 142:1–9. https://doi.org/10.1016/j.jmst.2022.10.006.

  6. He Z, Yang M, Wang Z, Chen H, Zhang X, Jiang Q, Murugadoss V, Huang M, Guo Z, Zhang H (2022) Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3. Adv Compos Hybrid Mater 5:2884–2895. https://doi.org/10.1007/s42114-022-00471-w

    Article  CAS  Google Scholar 

  7. Wang J, Fu R, Wen S, Ning P, Helal MH, Salem MA, Xu BB, El-Bahy ZM, Huang M, Guo Z, Huang L (2022) Progress and current challenges for CO2 capture materials from ambient air, Springer International Publishing. https://doi.org/10.1007/s42114-022-00567-3.

  8. Zhu X, Yang M, Wang Z, He B, Chen H, Zhang X, Yang X, Wang B, Zhang H (2023) Remarkable thermoelectric performance of carbon-based schwarzites. Adv Compos Hybrid Mater 6:1–12. https://doi.org/10.1007/s42114-022-00595-z

    Article  CAS  Google Scholar 

  9. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308. https://doi.org/10.1021/acsnano.7b02796

    Article  CAS  Google Scholar 

  10. Zheng P, Lv X, Shi S, Liu Y, Yang L, Ge D (2019) High-efficiency supercapacitors based on V2O5/rGONR network from hierarchical nanoribbon assemblies. J Alloys Compd 792:468–473. https://doi.org/10.1016/j.jallcom.2019.03.348

    Article  CAS  Google Scholar 

  11. Ahuja P, Sahu V, Ujjain SK, Sharma RK, Singh G (2014) Performance evaluation of asymmetric supercapacitor based on cobalt manganite modified graphene nanoribbons. Electrochim Acta 146:429–436. https://doi.org/10.1016/j.electacta.2014.09.039

    Article  CAS  Google Scholar 

  12. Gopi CV, Vinodh R, Sambasivam S, Obaidat IM, Kim HJ (2020) Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. J Energy Storage 27. https://doi.org/10.1016/j.est.2019.101035.

  13. Wang Z, Yang M, Xie X, Yu C, Jiang Q, Huang M, Algadi H, Guo Z, Zhang H (2022) Applications of machine learning in perovskite materials. Adv Compos Hybrid Mater 5:2700–2720. https://doi.org/10.1007/s42114-022-00560-w

    Article  Google Scholar 

  14. Sun C, Zou Y, Qin C, Zhang B, Wu X (2022) Temperature effect of photovoltaic cells: a review. Adv Compos Hybrid Mater 5:2675–2699. https://doi.org/10.1007/s42114-022-00533-z

    Article  Google Scholar 

  15. Yang D (2012) Application of nanocomposites for supercapacitors: characteristics and properties. Nanocomposites - New Trends Dev. https://doi.org/10.5772/50409

    Article  Google Scholar 

  16. Sun M, Wang J, Xu M, Fang Z, Jiang L, Han Q, Liu J, Yan M, Wang Q, Bi H (2019) Hybrid supercapacitors based on interwoven CoO-NiO-ZnO nanowires and porous graphene hydrogel electrodes with safe aqueous electrolyte for high supercapacitance. Adv Electron Mater 5:1–11. https://doi.org/10.1002/aelm.201900397

    Article  CAS  Google Scholar 

  17. Ouyang Y, Zhang B, Wang C, Xia X, Lei W, Hao Q (2021) Bimetallic metal-organic framework derived porous NiCo2S4 nanosheets arrays as binder-free electrode for hybrid supercapacitor. Appl Surf Sci 542:148621. https://doi.org/10.1016/j.apsusc.2020.148621.

  18. Xu B, Zhang H, Mei H, Sun D (2020) Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord Chem Rev 420:213438. https://doi.org/10.1016/j.ccr.2020.213438.

  19. Wang DG, Liang Z, Gao S, Qu C, Zou R (2020) Metal-organic framework-based materials for hybrid supercapacitor application. Coord Chem Rev 404:213093. https://doi.org/10.1016/j.ccr.2019.213093.

  20. Wang K, Bi R, Huang M, Lv B, Wang H, Li C, Wu H, Zhang Q (2020) Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices. Inorg Chem 59:6808–6814. https://doi.org/10.1021/acs.inorgchem.0c00060

    Article  CAS  Google Scholar 

  21. Beitollahi H, Van Le Q, Farha OK, Shokouhimehr M, Tajik S, Nejad FG, Kirlikovali KO, Jang HW, Varma RS (2020) Recent electrochemical applications of metal-organic framework- based materials. Cryst Growth Des 20:7034–7064. https://doi.org/10.1021/acs.cgd.0c00601

    Article  CAS  Google Scholar 

  22. Yang Z, Chabi S, Xia Y, Zhu Y (2015) Preparation of 3D graphene-based architectures and their applications in supercapacitors. Prog Nat Sci Mater Int 25:554–562. https://doi.org/10.1016/j.pnsc.2015.11.010

    Article  CAS  Google Scholar 

  23. Rani B, Sahu NK (2020) Electrochemical properties of CoFe2O4 nanoparticles and its rGO composite for supercapacitor. Diam Relat Mater 108:107978. https://doi.org/10.1016/j.diamond.2020.107978.

  24. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107. https://doi.org/10.1021/jp902214f

    Article  CAS  Google Scholar 

  25. Hu D, Xiao C, Wang X, Xiong X, Sun J, Zhuo Q, Wang J, Qin C, Dai L (2019) Poly(vinyl alcohol) fibers with excellent mechanical properties produced by reinforcement of single-walled graphene oxide nanoribbons with complete morphology obtained by freeze-drying. Fibers Polym 20:2637–2645. https://doi.org/10.1007/s12221-019-9253-9

    Article  CAS  Google Scholar 

  26. Martín A, Hernández-Ferrer J, Martínez MT, Escarpa A (2015) Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochim Acta 172:2–6. https://doi.org/10.1016/j.electacta.2014.11.090

    Article  CAS  Google Scholar 

  27. Sinitskii A, Dimiev A, Kosynkin DV, Tour JM (2010) Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano 4:5405–5413. https://doi.org/10.1021/nn101019h

    Article  CAS  Google Scholar 

  28. Senese AD, Chalifoux WA (2019) Nanographene and graphene nanoribbon synthesis via alkyne benzannulations. Molecules 24. https://doi.org/10.3390/molecules24010118.

  29. Sahu V, Goel S, Tomar AK, Singh G, Sharma RK (2017) Graphene nanoribbons @ vanadium oxide nanostrips for supercapacitive energy storage. Electrochim Acta 230:255–264. https://doi.org/10.1016/j.electacta.2017.01.188.

  30. Sinitskii A, Tour JM (2012) Patterning graphene nanoribbons using copper oxide nanowires. Appl Phys Lett 100:2012–2015. https://doi.org/10.1063/1.3692744

    Article  CAS  Google Scholar 

  31. Khajehpour M, Sadeghi S, Yazdi AZ, Sundararaj U (2014) Tuning the curing behavior of fluoroelastomer (FKM) by incorporation of nitrogen doped graphene nanoribbons (CNx-GNRs). Polymer (Guildf) 55:6293–6302. https://doi.org/10.1016/j.polymer.2014.10.008.

  32. Zou F, Hu X, Sun Y, Luo W, Xia F, Qie L, Jiang Y, Huang Y (2013) Microwave-induced in situ synthesis of Zn2GeO 4/N-doped graphene nanocomposites and their lithium-storage properties. Chem - A Eur J 19:6027–6033. https://doi.org/10.1002/chem.201204588

    Article  CAS  Google Scholar 

  33. Lai C, Guo Y, Zhao H, Song H, Qu X, Huang M, Hong SW, Lee K (2022) High-performance double “ion-buffering reservoirs” of asymmetric supercapacitors enabled by battery-type hierarchical porous sandwich-like Co3O4 and 3D graphene aerogels. Adv Compos Hybrid Mater 5:2557–2574. https://doi.org/10.1007/s42114-022-00532-0

    Article  CAS  Google Scholar 

  34. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  35. Zhao Y, Liu F, Zhao Z, Bai P, Ma Y, Alhadhrami A, Mersal GAM, Lin Z, Ibrahim MM, El-Bahy ZM (2022) Direct ink printing reduced graphene oxide/KCu7S4 electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 5:1516–1526. https://doi.org/10.1007/s42114-022-00488-1

    Article  CAS  Google Scholar 

  36. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5:1537–1547. https://doi.org/10.1007/s42114-022-00430-5

    Article  CAS  Google Scholar 

  37. Shang S, Gan L, Yuen CWM, Jiang SX, Luo NM (2015) The synthesis of graphene nanoribbon and its reinforcing effect on poly (vinyl alcohol). Compos Part A Appl Sci Manuf 68:149–154. https://doi.org/10.1016/j.compositesa.2014.10.011

    Article  CAS  Google Scholar 

  38. Li J, Xia J, Zhang F, Wang Z, Liu Q (2018) An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 181:80–86. https://doi.org/10.1016/j.talanta.2018.01.002

    Article  CAS  Google Scholar 

  39. Jaison MJ, Narayanan TN, Kumar TP, Pillai VK (2015) A single-step room-temperature electrochemical synthesis of nitrogen-doped graphene nanoribbons from carbon nanotubes. J Mater Chem A 3:18222–18228. https://doi.org/10.1039/c5ta03869c.

  40. Asadian E, Shahrokhian S, Zad AI, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: application to sensitive electrochemical detection of dobutamine. Sensors Actuators, B Chem 196:582–588. https://doi.org/10.1016/j.snb.2014.02.049

    Article  CAS  Google Scholar 

  41. Jabbari V, Veleta JM, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D (2016) Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783. https://doi.org/10.1016/j.cej.2016.06.034

    Article  CAS  Google Scholar 

  42. Ebrahim AM, Jagiello J, Bandosz TJ (2015) Enhanced reactive adsorption of H2S on Cu-BTC/S- and N-doped GO composites. J Mater Chem A 3:8194–8204. https://doi.org/10.1039/c5ta01359c

    Article  CAS  Google Scholar 

  43. Noor T, Ammad M, Zaman N, Iqbal N, Yaqoob L, Nasir H (2019) A highly efficient and stable copper BTC metal organic framework derived electrocatalyst for oxidation of methanol in DMFC application. Catal Letters 149:3312–3327. https://doi.org/10.1007/s10562-019-02904-6

    Article  CAS  Google Scholar 

  44. Karimi-Harandi MH, Shabani-Nooshabadi M, Darabi R (2021) Cu-BTC metal-organic frameworks as catalytic modifier for ultrasensitive electrochemical determination of methocarbamol in the presence of methadone. J Electrochem Soc 168:097507. https://doi.org/10.1149/1945-7111/ac2468.

  45. Nivetha R, Sajeev A, Paul AM, Gothandapani K, Gnanasekar S, Bhardwaj P, Jacob G, Sellappan R, Raghavan V, Pitchaimuthu S, Jeong SK (2020) Cu based metal organic framework (Cu-MOF) for electrocatalytic hydrogen evolution reaction. Mater Res Express 7. https://doi.org/10.1088/2053-1591/abb056.

  46. Venu B, Shirisha V, Vishali B, Naresh G, Kishore R, Sreedhar I, Venugopal A (2020) A Cu-BTC metal-organic framework (MOF) as an efficient heterogeneous catalyst for the aerobic oxidative synthesis of imines from primary amines under solvent free conditions. New J Chem 44:5972–5979. https://doi.org/10.1039/c9nj05997k

    Article  CAS  Google Scholar 

  47. Liu M, Song Y, He S, Tjiu WW, Pan J, Xia YY, Liu T (2014) Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction. ACS Appl Mater Interfaces 6:4214–4222. https://doi.org/10.1021/am405900r

    Article  CAS  Google Scholar 

  48. Saraf M, Rajak R, Mobin SM (2016) A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J Mater Chem A 4:16432–16445. https://doi.org/10.1039/c6ta06470a

    Article  CAS  Google Scholar 

  49. Liu M, Song Y, He S, Tjiu WW, Pan J, Xia YY, Liu T (2014) Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction

  50. Kshetri T, Singh TI, Lee YS, Khumujam DD, Kim NH, Lee JH (2021) Metal organic framework-derived cobalt telluride-carbon porous structured composites for high-performance supercapacitor. 211.

  51. Li Y, Miao J, Sun X, Xiao J, Li Y, Wang H, Xia Q, Li Z (2016) Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chem Eng J 298:191–197. https://doi.org/10.1016/j.cej.2016.03.141

    Article  CAS  Google Scholar 

  52. Zhai B, Song LL, Wang WJ, Li ZY, Li SZ, Zhang FL, Zhang C, Zang YB (2018) Structures and magnetic properties of 3D manganese(II)- and 2D pillar-layered copper(II)-organic framework derived from mixed carboxylate ligands. J Solid State Chem 264:29–34. https://doi.org/10.1016/j.jssc.2018.04.034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Rozhin Darabi: characterization of data and analysis of experimental part. Prof. Hassan Karimi-Maleh: writing—original draft preparation and revision of paper.

Corresponding author

Correspondence to Hassan Karimi-Maleh.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darabi, R., Karimi-Maleh, H. Hierarchical copper-1,3,5 benzenetricarboxylic acid-MOF-derived with nitrogen-doped graphene nanoribbons as a novel assembly nanocomposite for asymmetric supercapacitors. Adv Compos Hybrid Mater 6, 114 (2023). https://doi.org/10.1007/s42114-023-00696-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00696-3

Keywords

Navigation