Skip to main content
Log in

Poly(vinyl alcohol) Fibers with Excellent Mechanical Properties Produced by Reinforcement of Single-walled Graphene Oxide Nanoribbons with Complete Morphology Obtained by Freeze-drying

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nanofiller reinforcement is an effective approach to realize high performance of regular synthetic fibers. In this paper, graphene oxide nanoribbons (GONRs) with complete morphology were prepared via unzipping single-walled carbon nanotubes (SWCNTs) through long-time freeze-drying after oxidation. GONRs derived from SWCNTs (SGONRs) did not need any modification and could be directly added to poly(vinyl alcohol) (PVA) to form uniform dispersions and then continuous fibers were fabricated using wet spinning and hot-drawing. SGONRs provided abundant hydrogen bonding interaction with PVA chains, so SGONRs could not only obviously improve the dispersibility in PVA, but also enhance the mechanical properties of the composites. The tensile strength of PVA/SGONRs composite fibers with 0.4 wt% loading of SGONRs reach 1032 MPa, improved by 121 % compared with PVA/SWCNTs fiber, and by 200% with PVA fiber, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Watthanaphanit, P. Supaphol, H. Tamura, S. Tokura, and R. Rujiravanit, Carbohydr. Polym., 79, 738 (2010).

    Article  CAS  Google Scholar 

  2. X. Q. Ji, Y. H. Xu, W. L. Zhang, L. Cui, and J. Q. Liu, Compos. Part A: Appl. Sci. Manuf., 87, 29 (2016).

    Article  CAS  Google Scholar 

  3. J. N. Coleman, U. Khan, and Y. K. Gun'ko, Adv. Mater., 18, 689 (2006).

    Article  CAS  Google Scholar 

  4. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287, 637 (2000).

    Article  CAS  Google Scholar 

  5. W. H. Wu, J. G. Gao, Y. Xu, and Q. G. Xie, Fiber. Polym., 16, 664 (2015).

    Article  CAS  Google Scholar 

  6. P. Diao and Z. F. Liu, Adv. Mater., 22, 1430 (2010).

    Article  CAS  Google Scholar 

  7. J. P. Wang, H. P. Xu, D. D. Yang, and Y. H. Wu, Fiber. Polym., 14, 571 (2013).

    Article  CAS  Google Scholar 

  8. W. W. Zhang, W. L. Li, J. J. Wang, C. X. Qin, and L. X. Dai, Fiber. Polym., 11, 1132 (2010).

    Article  CAS  Google Scholar 

  9. P. Zhang, D. L. Qiu, H. F. Chen, J. Sun, J. J. Wang, C. X. Qin, and L. X. Dai, J. Mater. Chem. A, 3, 1442 (2015).

    Article  CAS  Google Scholar 

  10. G. Trakakis, G. Anagnostopoulos, L. Sygellou, A. Bakolas, J. Parthenios, D. Tasis, C. Galiotis, and K. Papagelis, Chem. Eng. J., 281, 793 (2015).

    Article  CAS  Google Scholar 

  11. M. A. Rafiee, L. Wei, A. V. Thomas, Z. Ardavan, R. Javad, J. M. Tour, and N. A. Koratkar, Acs. Nano., 4, 7415 (2010).

    Article  CAS  Google Scholar 

  12. Y. Wang, Z. X. Shi, and J. Yin, J. Phys. Chem. C, 114, 19621 (2010).

    Article  CAS  Google Scholar 

  13. L. Gan, S. M. Shang, C. W. M. Yuen, S. X. Jiang, and N. M. Luo, Compos. PartB: Eng., 69, 237 (2015).

    Article  CAS  Google Scholar 

  14. A. T. Chien, H. C. Liu, B. A. Newcomb, C. S. Xiang, J. M. Tour, and S. Kumar, ACS Appl. Mater. Interfaces, 7, 5281 (2015).

    Article  CAS  Google Scholar 

  15. M. Q. Wang, C. Y. Wang, Y. J. Song, C. H. Zhang, L. Shao, Z. X. Jiang, and Y. D. Huang, Compos. Sci. Technol, 165, 124 (2018).

    Article  CAS  Google Scholar 

  16. Y. Cheng, S. Y. Zhang, J. Li, J. Sun, J. J. Wang, C. X. Qin, and L. X. Dai, RSC Adv., 7, 21953 (2017).

    Article  Google Scholar 

  17. F. Valentini, L. Persichetti, A. Sgarlata, A. Balzarotti, and G. Palleschi, Fuller. Nanotub. Car. N., 21, 302 (2012).

    Article  Google Scholar 

  18. F. Valentini, D. Romanazzo, M. Carbone, and G. Palleschi, Electroanal, 24, 872 (2012).

    Article  CAS  Google Scholar 

  19. X. Z. Xu, A. J. Uddin, K. Aoki, Y. Gotoh, T. Saito, and M. Yumura, Carbon, 48, 1977 (2010).

    Article  CAS  Google Scholar 

  20. A. J. Uddin, A. Watanabe, Y. Gotoh, T. Saito, and M. Yumura, Text. Res. J., 82, 911 (2012).

    Article  CAS  Google Scholar 

  21. X. F. Zhang, T. Liu, T. V. Sreekumar, S. Kumar, X. D. Hu, and K. Smith, Polymer, 45, 8801 (2004).

    Article  CAS  Google Scholar 

  22. M. Yang, L. Weng, H. X. Zhu, F. Zhang, T. X. Fan, and D. Zhang, Sci Rep., 7, 17137 (2017).

    Article  Google Scholar 

  23. J. C. Fan, Z. X. Shi, M. Tian, J. L. Wang, and J. Yin, ACS Appl. Mater. Interfaces, 4, 5956 (2012).

    Article  CAS  Google Scholar 

  24. S. M. Shang, G. Lu, C. W. M. Yuen, S. X. Jiang, and N. M. Luo, Compos. Part A: Appl. Sci. Manuf, 68, 149 (2015).

    Article  CAS  Google Scholar 

  25. F. Cataldo, G. Compagnini, G. Patane, O. Ursini, G. Angelini, P. R. Ribic, G. Margaritondo, A. Cricenti, G. Palleschi, and F. Valentini, Carbon, 48, 2596 (2010).

    Article  CAS  Google Scholar 

  26. D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, J. Colloid. Interf Sci., 430, 108 (2014).

    Article  CAS  Google Scholar 

  27. C. Thomsen and S. Reich, Phys. Rev. Lett., 85, 5214 (2000).

    Article  CAS  Google Scholar 

  28. A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000).

    Article  CAS  Google Scholar 

  29. Y. P. Song, M. Feng, and H. B. Zhan, Electrochem. Commun., 45, 95 (2014).

    Article  CAS  Google Scholar 

  30. X. Zhao, Q. H. Zhang, D. J. Chen, and P. Lu, Macromolecules, 43, 2357 (2010).

    Article  CAS  Google Scholar 

  31. J. I. Paredes, S. V. Rodil, P. S. Fernandez, A. M. Alonso, and J. M. D. Tascon, Langmuir, 25, 5957 (2009).

    Article  CAS  Google Scholar 

  32. N. Grossiord, O. Regev, J. Loos, J. Meuldijk, and C. E. Koning, Anal. Chem., 11, 5135 (2005).

    Article  Google Scholar 

  33. D. E. Hill, Y. Lin, A. M. Rao, L. F. Allard, and Y. P. Sun, Macromolecules, 35, 319 (2002).

    Article  Google Scholar 

  34. W. J. Huang, S. Taylor, K. F. Fu, Y. Lin, D. H. Zhang, T. W. Hanks, A. M. Rao, and Y. P. Sun, Nano. Lett., 2, 311 (2002).

    Article  CAS  Google Scholar 

  35. L. Salem, Science, 156, 1473 (1967).

    Article  Google Scholar 

  36. J. Li, Y. Cheng, S. Y. Zhang, Y. J. Li, J. Sun, C. X. Qin, J. J. Wang, and L. X. Dai, Compos. Part A: Appl. Sci. Manuf., 101, 115 (2017).

    Article  CAS  Google Scholar 

  37. B. Faria, C. Guarda, N. Silvestre, J. N. C. Lopes, and D. Galhofo, Compos. Part B: Eng, 145, 108 (2018).

    Article  CAS  Google Scholar 

  38. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, and A. Dimiev, Nature, 458, 872 (2009).

    Article  CAS  Google Scholar 

  39. Y. F. Huang, M. Q. Zhang, and W. H. Ruan, J. Mater. Chem. A, 2, 10508 (2014).

    Article  CAS  Google Scholar 

  40. C. Belver, C. Breen, F. Clegg, C. E. Fernandes, and M. A. Vicente, Langmuir, 21, 2129 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by National Key Research and Development Program of China (2017YFB0309401), Jiangsu Provincial Natural Science Foundation of China (No. BK20161214), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the State & Local Joint Engineering Laboratory for Novel Functional Polymeric Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanxiang Qin or Lixing Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Xiao, C., Wang, X. et al. Poly(vinyl alcohol) Fibers with Excellent Mechanical Properties Produced by Reinforcement of Single-walled Graphene Oxide Nanoribbons with Complete Morphology Obtained by Freeze-drying. Fibers Polym 20, 2637–2645 (2019). https://doi.org/10.1007/s12221-019-9253-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9253-9

Keywords

Navigation