Skip to main content
Log in

Realizing enhanced dielectric and mechanical performance of polyvinylidene fluoride/SiC nanocomposites through a bio-inspired interface design

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The incorporation of high-dielectric permittivity ceramic or conductive fillers into the polymer is an effective method to obtain flexible high-performance dielectric materials, but it is still a huge challenge to achieve a balance between dielectric and mechanical properties. In this paper, we report a polyvinylidene fluoride (PVDF) nanocomposite based on a novel crab leg-like filler, in which Ag nanoparticles (AgNPs) were decorated on the surface of polydopamine (PDA)-coated silicon carbide (SiC) nanowhiskers (NWs). Compared with the nanocomposites with as-received SiC, this PVDF/SiC@PDA@Ag nanocomposites exhibited significantly suppressed dielectric loss (0.03 at 1 kHz) and leakage current. The Argant plot (\({\varepsilon }^{^{\prime}}\)- \({\varepsilon }^{\prime\prime}\) curve) and electric modulus analysis demonstrated that the inhibition of the organic layer of PDA to interface polarization and the coulomb-blockade effect of AgNPs hindered carrier transport, which resulted in the largely suppressed dielectric loss. Furthermore, while the dielectric properties were improved, the PVDF/SiC@PDA@Ag nanocomposites also exhibited excellent mechanical and thermal conductivity. Ultimately, the nanocomposites prepared via this method are promising for applications in microelectronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hu HL, Zhang F, Luo SB, Chang WK, Yue JL, Wang CH (2020) Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 74:104844

  2. Fan BH, Zhou MY, Zhang C, He DL, Bai JB (2019) Polymer-based materials for achieving high energy density film capacitors. Prog Polym Sci 97:101143

  3. Zhang HB, Marwat MA, Xie B, Ashtar M, Liu K, Zhu YW, Zhang L, Fan PY, Samart C, Ye ZG (2020) Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications. ACS Appl Mater Inter 12(1):1–37

    Article  Google Scholar 

  4. Wei JJ, Zhu L (2020) Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog Polym Sci 106:101254

  5. Luo H, Zhou XF, Ellingford C, Zhang Y, Chen S, Zhou KC, Zhang D, Bowen CR, Wan CY (2019) Interface design for high energy density polymer nanocomposites. Chem Soc Rev 48(16):4424–4465

    Article  CAS  Google Scholar 

  6. Huang XY, Sun B, Zhu YK, Li ST, Jiang PK (2019) High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Polym Sci 100:187–225

    CAS  Google Scholar 

  7. Saxena P, Shukla P (2021) A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv Compos Hybrid Mater 4:8–26

    Article  CAS  Google Scholar 

  8. Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl Phys Lett 90(1):012901

  9. Zhou T, Zha JW, Cui RY, Fan BH, Yuan JK, Dang ZM (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Inter 3(7):2184–2188

    Article  CAS  Google Scholar 

  10. Zhu PW, Weng L, Zhang XR, Wang XM, Guan LZ, Liu LZ (2020) Graphene@poly(dopamine)-Ag core–shell nanoplatelets as fillers to enhance the dielectric performance of polymer composites. J Mater Sci 55(18):7665–7679

    Article  CAS  Google Scholar 

  11. Rekik H, Ghallabi Z, Royaud I, Arous M, Seytre G, Boiteux G, Kallel A (2013) Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Compos Part B Eng 45(1):1199–1206

    Article  CAS  Google Scholar 

  12. Wang L, Dang ZM (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87:042903

  13. Fan BH, Zha JW, Wang DR, Zhao J, Zhang ZF, Dang ZM (2013) Preparation and dielectric behaviors of thermoplastic and thermosetting polymer nanocomposite films containing BaTiO3 nanoparticles with different diameters. Compos Sci Technol 80:66–72

    Article  CAS  Google Scholar 

  14. Dang ZM, Shen Y, Fan LZ, Cai N, Nan CW, Zhao SJ (2003) Dielectric properties of carbon fiber filled low-density polyethylene. J Appl Phys 93(9):5543–5545

    Article  CAS  Google Scholar 

  15. Costa P, Silva J, Lanceros Mendez S (2016) Strong increase of the dielectric response of carbon nanotube/poly(vinylidene fluoride) composites induced by carbon nanotube type and pre-treatment. Compos Part B Eng 93:310–316

    Article  CAS  Google Scholar 

  16. Li LL, Fu Q, Li Y, Li WP (2016) High dielectric constant, low loss, and low percolation threshold dielectric composites based on polyvinylidene fluoride and ferroferric oxide nanorods. Appl Phys Lett 109(7):072905

  17. Wang ZX, Li XF, Wang LY, Li YP, Qin JY, Xie PT, Qu YP, Sun K, Fan RH (2020) Flexible multi-walled carbon nanotubes/polydimethylsiloxane membranous composites toward high-permittivity performance. Adv Compos Hybrid Mater 3:1–7

    Article  CAS  Google Scholar 

  18. Wang QM, Zhang JM, Zhang ZD, Hao YN, Bi K (2020) Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Adv Compos Hybrid Mater 3:58–65

    Article  CAS  Google Scholar 

  19. Wang J, Shi ZC, Wang X, Mai XM, Fan RH, Liu H, Wang XJ, Guo ZH (2018) Enhancing dielectric performance of poly(vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticles. Eng Sci 4:79–86

    Google Scholar 

  20. Zhao QY, Yang L, Peng QR, Ma YZ, Ji HL, Qiu JH (2021) Achieving superior energy density in ferroelectric P(VDF-HFP) through the employment of dopamine-modified MOFs. Compos Sci Technol 201:108520

  21. Xie LY, Huang XY, Wu C, Jiang PK (2011) Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J Mater Chem 21(16):5897–5906

    Article  CAS  Google Scholar 

  22. Yang K, Huang XY, Xie LY, Wu C, Jiang PK, Tanaka T (2012) Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromol Rapid Commun 33(22):1921–1926

    Article  CAS  Google Scholar 

  23. Fan YY, Huang XY, Wang GY, Jiang PK (2015) Core–shell structured biopolymer@BaTiO3 nanoparticles for biopolymer nanocomposites with significantly enhanced dielectric properties and energy storage capability. J Phys Chem C 119(49):27330–27339

    Article  CAS  Google Scholar 

  24. Huang YH, Huang XY, Schadler LS, He JL, Jiang PK (2016) Core@double-shell structured nanocomposites: a route to high dielectric constant and low loss material. ACS Appl Mater Inter 8(38):25496–25507

    Article  CAS  Google Scholar 

  25. Song Y, Shen Y, Liu HY, Lin YH, Li M, Nan CW (2012) Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. J Mater Chem 22(16):8063–8068

    Article  CAS  Google Scholar 

  26. Zhu JM, Ji XY, Yin M, Guo SY, Shen JB (2017) Poly (vinylidene fluoride) based percolative dielectrics with tunable coating of polydopamine on carbon nanotubes: Toward high permittivity and low dielectric loss. Compos Sci Technol 144:79–88

    Article  CAS  Google Scholar 

  27. Li YH, Yuan JJ, Xue J, Cai FY, Chen F, Fu Q (2015) Towards suppressing loss tangent: effect of polydopamine coating layers on dielectric properties of core–shell barium titanate filled polyvinylidene fluoride composites. Compos Sci Technol 118:198–206

    Article  CAS  Google Scholar 

  28. Ruan MN, Yang D, Guo WL, Zhang LQ, Li SX, Shang YW, Wu YB, Zhang M, Wang H (2018) Improved dielectric properties mechanical properties and thermal conductivity properties of polymer composites via controlling interfacial compatibility with bio-inspired method. Appl Surf Sci 439:186–195

    Article  CAS  Google Scholar 

  29. Yan H, Dai XJ, Ruan KP, Zhang SJ, Shi XT, Guo YQ, Cai HQ, Gu JW (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4:36–50

    Article  CAS  Google Scholar 

  30. Wu W, Zhao W, Gong X, Sun Q, Cao X, Su Y, Yu B, Li RKY, Vellaisamy RAL (2021) Surface decoration of halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites. J Mater Sci Technol

  31. Wang Z, Yang M, Cheng Y, Liu J, Xiao B, Chen S, Huang J, Xie Q, Wu G, Wu H (2019) Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos Part A Appl S 118:302–311

    Article  CAS  Google Scholar 

  32. Yang D, Kong XX, Ni YF, Xu YJ, Huang S, Shang GJ, Xue H, Guo WL, Zhang LQ (2018) Enhancement of dielectric performance of polymer composites via constructing BaTiO3-Poly(dopamine)-Ag nanoparticles through mussel-inspired surface functionalization. ACS Omega 3(10):14087–14096

    Article  CAS  Google Scholar 

  33. Yang D, Ni YF, Liang YF, Li BY, Ma HN, Zhang LQ (2019) Improved thermal conductivity and electromechanical properties of natural rubber by constructing Al2O3-PDA-Ag hybrid nanoparticles. Compos Sci Technol 180:86–93

    Article  CAS  Google Scholar 

  34. Silakaew K, Thongbai P (2019) Suppressed loss tangent and conductivity in high-permittivity Ag-BaTiO3/PVDF nanocomposites by blocking with BaTiO3 nanoparticles. Appl Surf Sci 492:683–689

    Article  CAS  Google Scholar 

  35. Xie LY, Huang XY, Li BW, Zhi CY, Tanaka T, Jiang PK (2013) Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density high breakdown strength and low dielectric loss. Phys Chem Chem Phys 15(40):17560–17569

    Article  CAS  Google Scholar 

  36. Yang K, Huang XY, He JL, Jiang PK (2015) Strawberry-like core-shell Ag@polydopamine@BaTiO3 hybrid nanoparticles for high-k polymer nanocomposites with high energy density and low dielectric loss. Adv Mater Interfaces 2(17):1500631

    Article  Google Scholar 

  37. Yang D, Huang S, Ruan MN, Wu YB, Li SX, Wang H, Zhang JY, Ma HN, Guo WL, Zhang LQ (2017) Controllable dielectric performance of polymer composites via the Coulomb-blockade effect with core–shell structured nano-particles. J Mater Chem C 5(31):7759–7767

    Article  CAS  Google Scholar 

  38. Pan ZB, Wang MK, Chen JW, Shen B, Liu JJ, Zhai JW (2018) Largely enhanced energy storage capability of a polymer nanocomposite utilizing a core-satellite strategy. Nanoscale 10(35):16621–16629

    Article  CAS  Google Scholar 

  39. Wang LW, Huang XY, Zhu YK, Jiang PK (2018) Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles. Phys Chem Chem Phys 20(7):5001–5011

    Article  CAS  Google Scholar 

  40. Xia WM, Yin YL, Xing JH, Xu Z (2018) The effects of double-shell organic interfaces on the dielectric and energy storage properties of the P(VDF-CTFE)/BT@HBP@PDA-Ag nanocomposite films. Results Phys 11:877–884

    Article  Google Scholar 

  41. Phromviyo N, Thongbai P, Maensiri S (2018) High dielectric permittivity and suppressed loss tangent in PVDF polymer nanocomposites using gold nanoparticle–deposited BaTiO3 hybrid particles as fillers. Appl Surf Sci 446:236–242

    Article  CAS  Google Scholar 

  42. Phromviyo N, Chanlek N, Thongbai P, Maensiri S (2018) Enhanced dielectric permittivity with retaining low loss in poly(vinylidene fluoride) by incorporating with Ag nanoparticles synthesized via hydrothermal method. Appl Surf Sci 446:59–65

    Article  CAS  Google Scholar 

  43. Chen JW, Yu XM, Yang FQ, Fan Y, Jiang YW, Zhou YX, Duan ZK (2017) Enhanced energy density of polymer composites filled with BaTiO3@Ag nanofibers for pulse power application. J Mater Sci Mater Electron 28:8043–8050

    Article  CAS  Google Scholar 

  44. Wang B, Yin XH, Peng D, Lv RH, Na B, Liu HS, Gu XB, Wu W, Zhou JL, Zhang Y (2020) Achieving thermally conductive low loss PVDF-based dielectric composites via surface functionalization and orientation of SiC nanowires. Express Polym Lett 14(1):2–11

    Article  CAS  Google Scholar 

  45. Zhang XH, Tan C, Ma YH, Wang F, Yang WT (2018) BaTiO3@carbon/silicon carbide/poly(vinylidene fluoride-hexafluoropropylene) three-component nanocomposites with high dielectric constant and high thermal conductivity. Compos Sci Technol 162:180–187

    Article  Google Scholar 

  46. Cao XW, Zhao WJ, Gong XJ, Zhang DL, Sun QJ, Zha JW, Yin XM, Wu W, Li RKY (2021) Mussel-inspired polydopamine functionalized silicon carbide whisker for PVDF composites with enhanced dielectric performance. Compos Part A Appl S 148:106486

  47. Ball V, Nguyen I, Haupt M, Oehr C, Arnoult C, Toniazzo V, Ruch D (2011) The reduction of Ag+ in metallic silver on pseudomelanin films allows for antibacterial activity but does not imply unpaired electrons. J Colloid Interface Sci 364:359–365

    Article  CAS  Google Scholar 

  48. Lee HA, Park E, Lee H (2020) Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv Mater 32(35):e1907505

  49. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    Article  CAS  Google Scholar 

  50. An P, Zuo F, Li XH, Wu YP, Zhang JH, Zheng ZH, Ding XB, Peng YX (2013) A bio-inspired polydopamine approach to preparation of gold-coated Fe3O4 core–shell nanoparticles: synthesis characterization and mechanism. NANO 8(6):21–33

    Article  Google Scholar 

  51. Tülbez S, Esen Z, Dericioglu AF (2020) Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites. Adv Compos Hybrid Mater 3:177–186

    Article  Google Scholar 

  52. Sun L, Liang L, Shi ZC, Wang HL, Xie PT, Dastan D, Sun K, Fan RH (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng Sci 12:95–105

    CAS  Google Scholar 

  53. Zhang ZC, Gu YZ, Wang SK, Li M, Bi JY, Zhang ZG (2015) Enhancement of dielectric and electrical properties in BT/SiC/PVDF three-phase composite through microstructure tailoring. Compos Part A Appl S 74:88–95

    Article  CAS  Google Scholar 

  54. Zhang J, Mine M, Zhu D, Matsuo M (2009) Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 47:1311–1320

    Article  CAS  Google Scholar 

  55. Yang ZT, Tong YZ, Xu WH, Yin XC, Zhang GZ, Qu JP (2018) Electric field-induced alignment of MWCNTs during the processing of PP/MWCNT composites: effects on electrical dielectric and rheological properties. J Polym Eng 38:881–889

    Article  CAS  Google Scholar 

  56. Zheng ZY, Olayinka O, Li B (2018) 2S-Soy Protein-based biopolymer as a non-covalent surfactant and its effects on electrical conduction and dielectric relaxation of polymer nanocomposites. Eng Sci 4:87–99

    Google Scholar 

  57. Li YC, Ge XC, Wang LP, Wang LF, Liu W, Li R, Li H, Tjong SC (2013) Dielectric relaxation behavior of PVDF composites with nanofillers of different conductive nature. Curr Nanosci 9(5):679–685

    Article  CAS  Google Scholar 

  58. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33(8):2027–2037

    Article  CAS  Google Scholar 

  59. Li Y, Huang XY, Hu ZW, Jiang PK, Li ST, Tanaka T (2011) Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Inter 3(11):4396–4403

    Article  CAS  Google Scholar 

  60. Zhang YT, Wang WD, Zhang J, Ni YR (2020) Dielectric relaxation processes in PVDF composite. Polym Test 91:106801

  61. Zhou Y, Luo H, Chen S, Han XH, Zhang D (2019) Optimising the dielectric property of carbon nanotubes/P(VDF-CTFE) nanocomposites by tailoring the shell thickness of liquid crystalline polymer modified layer. IET Nanodielectrics 2(4):142–150

    Article  Google Scholar 

  62. Jiang YC, Wang JB, Zhang QL, Yang H, Shen D, Zhou FM (2019) Enhanced dielectric performance of P(VDF-HFP) composites filled with Ni@polydopamine@BaTiO3 nanowires. Colloid Surface A 576:55–62

    Article  CAS  Google Scholar 

  63. Feng YF, Xu ZC, Hu JB, Huang HP, Peng C (2017) Significantly reduced dielectric loss and conductivity in polymer-based nano-composites from a suppressed interface Coulomb force. Mater Res Express 4(9):095001

Download references

Funding

We received financial support from the National Key Research and Development Program of China (No. 2016YFB0302000), Science and Technology Planning Program of Guangdong Province, China (No. 2020A0505100010), the Fundamental Research Funds for the Central Universities of China (No. 2019MS062), and the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education of China (No. KFKT1904).

Author information

Authors and Affiliations

Authors

Contributions

Yi-zhang Tong: Conceptualization, Methodology, Validation, Writing—original draft. Wan-jing Zhao: Methodology, Investigation. Wei Wu: Conceptualization, Investigation. Dong-li Zhang: Resources. Guang-jian He: Supervision, Funding acquisition. Zhi-tao Yang: Writing—review and editing, Supervision. Xian-wu Cao: Writing—review and editing, Resources, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Zhi-tao Yang or Xian-wu Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7563 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Yz., Zhao, Wj., Wu, W. et al. Realizing enhanced dielectric and mechanical performance of polyvinylidene fluoride/SiC nanocomposites through a bio-inspired interface design. Adv Compos Hybrid Mater 5, 263–277 (2022). https://doi.org/10.1007/s42114-021-00333-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00333-x

Keywords

Navigation