Skip to main content

Advertisement

Log in

Current progress on the 3D printing of thermosets

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

3D printing has attracted increasing attention as it exhibits excellent potential in the fabrication of 3D complex structures, which are very difficult to make using conventional techniques, with low cost, less energy, and material consumption. Thermosets are integral to today’s aerospace, automotive, marine, and energy industries and will be vital to the next generation of lightweight, energy-efficient structures, owing to their excellent specific strength, thermal stability, and chemical resistance. Manufacturing with thermosets using innovative 3D printing techniques has the potential to revolutionize composite manufacturing. However, thermosets are highly crosslinked and irreversibly cured, and it is challenging to integrate the printing process with curing process at high rate and high quality. This review will address current effort and future direction in 3D printing of thermosets.

Graphical abstract

3D printing of thermosets incorporates non-reversible crosslinkage reaction, resulting in tunable structure and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shi Q et al (2017) Recyclable 3D printing of vitrimer epoxy. Mater Horiz 4(4):598–607. https://doi.org/10.1039/C7MH00043J

    Article  CAS  Google Scholar 

  2. Robertson ID et al (2018) Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557(7704):223–227. https://doi.org/10.1038/s41586-018-0054-x

    Article  CAS  Google Scholar 

  3. Rodriguez JN, Zhu C, Duoss EB, Wilson TS, Spadaccini CM, Lewicki JP (2016) Shape-morphing composites with designed micro-architectures. Sci Rep 6(1). https://doi.org/10.1038/srep27933

  4. Baekeland LH (1909) The synthesis, constitution, and uses of bakelite. J Ind Eng Chem 1(3):149–161. https://doi.org/10.1021/ie50003a004

    Article  CAS  Google Scholar 

  5. Bryce DM (1996) Plastic injection molding: manufacturing process fundamentals. Society of Manufacturing Engineers, Dearborn

    Google Scholar 

  6. Agarwal BD, Broutman LJ, Chandrashekhara K (2006) Analysis and performance of fiber composites, 3rd edn. Wiley, Hoboken

    Google Scholar 

  7. Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64(5):629–644. https://doi.org/10.1016/j.compscitech.2003.06.001

    Article  CAS  Google Scholar 

  8. Advani SG, Hsiao K-T (eds) (2012) Manufacturing techniques for polymer matrix composites (PMCs). Woodhead Publishing, Cambridge

    Google Scholar 

  9. Kuang X, Zhao Z, Chen K, Fang D, Kang G, Qi HJ (2018) High-speed 3D printing of high-performance thermosetting polymers via two-stage curing. Macromol Rapid Commun 39(7):1700809. https://doi.org/10.1002/marc.201700809

    Article  CAS  Google Scholar 

  10. Fette M, Sander P, Wulfsberg J, Zierk H, Herrmann A, Stoess N (2015) Optimized and cost-efficient compression molds manufactured by selective laser melting for the production of thermoset fiber reinforced plastic aircraft components. Procedia CIRP 35:25–30. https://doi.org/10.1016/j.procir.2015.08.082

    Article  Google Scholar 

  11. Chandrasekaran S, Duoss EB, Worsley MA, Lewicki JP (2018) 3D printing of high performance cyanate ester thermoset polymers. J Mater Chem A 6(3):853–858. https://doi.org/10.1039/C7TA09466C

    Article  CAS  Google Scholar 

  12. Taormina G, Sciancalepore C, Bondioli F, Messori M (2018) Special resins for stereolithography: in situ generation of silver nanoparticles. Polymers 10(2):212. https://doi.org/10.3390/polym10020212

    Article  CAS  Google Scholar 

  13. Lewicki JP et al (2017) 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci Rep 7:43401. https://doi.org/10.1038/srep43401

    Article  Google Scholar 

  14. Chiappone A et al (2017) Study of graphene oxide-based 3D printable composites: effect of the in situ reduction. Compos Part B Eng 124:9–15. https://doi.org/10.1016/j.compositesb.2017.05.049

    Article  CAS  Google Scholar 

  15. Szebenyi G, Czigany T, Magyar B, Karger-Kocsis J (2017) 3D printing-assisted interphase engineering of polymer composites: concept and feasibility. Express Polym Lett 11(7):525–530. https://doi.org/10.3144/expresspolymlett.2017.50

    Article  CAS  Google Scholar 

  16. Hao W, Liu Y, Zhou H, Chen H, Fang D (2018) Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym Test 65:29–34. https://doi.org/10.1016/j.polymertesting.2017.11.004

    Article  CAS  Google Scholar 

  17. Yang K et al (2017) Diels-Alder reversible thermoset 3D Printing: isotropic thermoset polymers via fused filament fabrication. Adv Funct Mater 27(24):1700318. https://doi.org/10.1002/adfm.201700318

    Article  CAS  Google Scholar 

  18. Compton BG et al (2018) Direct-write 3D printing of NdFeB bonded magnets. Mater Manuf Process 33(1):109–113. https://doi.org/10.1080/10426914.2016.1221097

    Article  CAS  Google Scholar 

  19. Chen K, Kuang X, Li V, Kang G, Qi HJ (2018) Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter 14(10):1879–1886. https://doi.org/10.1039/C7SM02362F

    Article  CAS  Google Scholar 

  20. Ligon-Auer SC, Schwentenwein M, Gorsche C, Stampfl J, Liska R (2016) Toughening of photo-curable polymer networks: a review. Polym Chem 7(2):257–286. https://doi.org/10.1039/C5PY01631B

    Article  CAS  Google Scholar 

  21. Osswald TA, Puentes J, Kattinger J (2018) Fused filament fabrication melting model. Addit Manuf 22:51–59. https://doi.org/10.1016/j.addma.2018.04.030

    Article  CAS  Google Scholar 

  22. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45(10):2740–2755. https://doi.org/10.1039/C5CS00714C

    Article  CAS  Google Scholar 

  23. Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935. https://doi.org/10.1002/adma.201401804

    Article  CAS  Google Scholar 

  24. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  25. Rimdusit S, Lohwerathama M, Hemvichian K, Kasemsiri P, Dueramae I (2013) Shape memory polymers from benzoxazine-modified epoxy. Smart Mater Struct 22(7):075033. https://doi.org/10.1088/0964-1726/22/7/075033

    Article  CAS  Google Scholar 

  26. Licari JJ, Swanson DW (2011) Chemistry, formulation, and properties of adhesives. In: Adhesives technology for electronic applications. Elsevier, pp 75–141

  27. Wang R-M, Zheng S-R, Zheng Y-P (2011) Matrix materials. In: Polymer matrix composites and technology. Elsevier, pp 101–548

  28. Zhu W et al (2016) A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Sci Rep 6(1). https://doi.org/10.1038/srep33780

  29. Robertson ID, Dean LM, Rudebusch GE, Sottos NR, White SR, Moore JS (2017) Alkyl phosphite inhibitors for frontal ring-opening metathesis polymerization greatly increase pot life. ACS Macro Lett. 6(6):609–612. https://doi.org/10.1021/acsmacrolett.7b00270

    Article  CAS  Google Scholar 

  30. Vallons KAM, Drozdzak R, Charret M, Lomov SV, Verpoest I (2015) Assessment of the mechanical behaviour of glass fibre composites with a tough polydicyclopentadiene (PDCPD) matrix. Compos Part Appl Sci Manuf 78:191–200. https://doi.org/10.1016/j.compositesa.2015.08.016

    Article  CAS  Google Scholar 

  31. Wang B et al (2019) 3D printing of in-situ curing thermally insulated thermosets. Manuf Lett 21:1–6. https://doi.org/10.1016/j.mfglet.2019.06.001

    Article  Google Scholar 

  32. Garcia JM et al (2014) Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 344(6185):732–735. https://doi.org/10.1126/science.1251484

    Article  CAS  Google Scholar 

  33. Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like malleable materials from permanent organic networks. Science 334(6058):965–968. https://doi.org/10.1126/science.1212648

    Article  CAS  Google Scholar 

  34. Capelot M, Montarnal D, Tournilhac F, Leibler L (2012) Metal-catalyzed transesterification for healing and assembling of thermosets. J Am Chem Soc 134(18):7664–7667. https://doi.org/10.1021/ja302894k

    Article  CAS  Google Scholar 

  35. Chen X (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702. https://doi.org/10.1126/science.1065879

    Article  CAS  Google Scholar 

  36. Sun H-B, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl Phys Lett 74(6):786–788. https://doi.org/10.1063/1.123367

    Article  CAS  Google Scholar 

  37. Zhang B, Kowsari K, Serjouei A, Dunn ML, Ge Q (2018) Reprocessable thermosets for sustainable three-dimensional printing. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-04292-8

  38. Miao S et al (2017) 4D printing of polymeric materials for tissue and organ regeneration. Mater Today 20(10):577–591. https://doi.org/10.1016/j.mattod.2017.06.005

    Article  CAS  Google Scholar 

  39. Choong YYC, Maleksaeedi S, Eng H, Wei J, Su P-C (2017) 4D printing of high performance shape memory polymer using stereolithography. Mater Des 126:219–225. https://doi.org/10.1016/j.matdes.2017.04.049

    Article  CAS  Google Scholar 

  40. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S (2016) 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 28(22):4449–4454. https://doi.org/10.1002/adma.201503132

    Article  CAS  Google Scholar 

  41. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  CAS  Google Scholar 

  42. Kelbassa I, Wohlers T, Caffrey T (2012) Quo vadis , laser additive manufacturing? J Laser Appl 24(5):050101. https://doi.org/10.2351/1.4745081

    Article  Google Scholar 

  43. Tumbleston JR et al (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352. https://doi.org/10.1126/science.aaa2397

    Article  CAS  Google Scholar 

  44. Walker DA, Hedrick JL, Mirkin CA (2019) Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366(6463):360–364. https://doi.org/10.1126/science.aax1562

    Article  CAS  Google Scholar 

  45. Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK (2019) Volumetric additive manufacturing via tomographic reconstruction. Science 363(6431):1075–1079. https://doi.org/10.1126/science.aau7114

    Article  CAS  Google Scholar 

  46. Hamerton I, Mooring L (2012) The use of thermosets in aerospace applications. In: Thermosets. Elsevier, pp 189–227

  47. Jimenez M, Duquesne S, Bourbigot S (2006) Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol 201(3–4):979–987. https://doi.org/10.1016/j.surfcoat.2006.01.026

    Article  CAS  Google Scholar 

  48. Song D, Gupta RK (2012) The use of thermosets in the building and construction industry. In: Thermosets. Elsevier, pp 165–188

  49. A. K. H.P.S. et al (2017) Nanofibrillated cellulose reinforcement in thermoset polymer composites. In: Cellulose-Reinforced Nanofibre Composites. Elsevier, pp 1–24

  50. Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70(7):1154–1160. https://doi.org/10.1016/j.compscitech.2010.03.001

    Article  CAS  Google Scholar 

  51. Kliem M, Høgsberg J, Wang Q, Dannemann M (2017) Characterization of clay-modified thermoset polymers under various environmental conditions for the use in high-voltage power pylons. Adv Mech Eng 9(5):168781401769889. https://doi.org/10.1177/1687814017698890

    Article  CAS  Google Scholar 

Download references

Funding

The authors received funding support from Texas A&M Engineering Experiment Station (TEES), National Science Foundation and State of Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiren Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, Z., Pei, Z. et al. Current progress on the 3D printing of thermosets. Adv Compos Hybrid Mater 3, 462–472 (2020). https://doi.org/10.1007/s42114-020-00183-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00183-z

Keywords

Navigation