Skip to main content
Log in

Sulfonated poly(fluorene ether ketone) (SPFEK)/α-zirconium phosphate (ZrP) nanocomposite membranes for fuel cell applications

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Methanol crossover through polymer electrolyte membranes (PEMs) is a major concern in fuel cell research. In order to address this problem, a sulfonated poly(fluorenyl ether ketone) (SPFEK)/α-zirconium phosphate (ZrP) nanocomposite membrane containing 2.0 wt. % of ZrP nanosheets was prepared by casting a dimethylacetamide (DMAc) dispersion containing SPFEK and exfoliated ZrP nanosheets. The membrane was characterized and tested as a PEM in a single direct methanol fuel cell (DMFC) at 80 °C. The introduction of ZrP nanosheets improved the oxidative stability and reduced methanol permeability and water uptake of the PEM. The SPFEK/ZrP nanocomposite membrane led to the best cell performance among the single cells using SPFEK/ZrP nanocomposite membrane, SPFEK, and Nafion® 117. The maximum power densities obtained for the cells composed of the above three membranes were 51.3, 41.4, and 43.6 mW/cm2, respectively.

Sulfonated poly(fluorenyl ether ketone)/α-zirconium phosphate nanocomposite was synthesized as a high performance membrane for direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185(1):29–39

    CAS  Google Scholar 

  2. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112(5):2780–2832

    CAS  Google Scholar 

  3. Ramya K, Dhathathreyan KS (2003) Direct methanol fuel cells: Determination of fuel crossover in a polymer electrolyte membrane. J Electroanal Chem 542:109–115

    CAS  Google Scholar 

  4. Mauritz KA, Moore RB (2004) State of Understanding of Nafion. Chem Rev 104(10):4535–4585

    CAS  Google Scholar 

  5. Kim Y (2004) Evaluation of a palladinized Nafion? for direct methanol fuel cell application. Electrochim Acta 49(19):3227–3234

    CAS  Google Scholar 

  6. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25(10):1463–1502

    CAS  Google Scholar 

  7. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612

    CAS  Google Scholar 

  8. Kuzmenko M, Poryadchenko N (2005) Perspective materials for application in fuel-cell technologies. Springer, Netherlands

    Google Scholar 

  9. Li Q, Chen Y, Rowlett JR, Mcgrath JE, Mack NH, Kim YS (2014) Controlled disulfonated poly(arylene ether sulfone) multiblock copolymers for direct methanol fuel cells. ACS Appl Mater Interfaces 6(8):5779–5788

    CAS  Google Scholar 

  10. Fang J, Shen PK, Liu QL (2007) Low methanol permeable sulfonated poly(phthalazinone ether sulfone) membranes for DMFCs. J Membr Sci 293(1/2):94–99

    CAS  Google Scholar 

  11. Wang L, Meng YZ, Wang SJ, Shang XY, Li L, Hay AS (2004) Synthesis and Sulfonation of Poly(aryl ethers) Containing Triphenyl Methane and Tetraphenyl Methane Moieties from Isocynate-Masked Bisphenols. Macromolecules 37(9):3151–3158

    CAS  Google Scholar 

  12. Chen Y, Meng Y, Wang S, Tian S, Chen Y, Hay A (2006) Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application. J Membr Sci 280(1-2):433–441

    CAS  Google Scholar 

  13. Nagarale RK, Shin W, Singh PK (2010) Progress in ionic organic-inorganic composite membranes for fuel cell applications. Polym Chem 1(4):388–408

    CAS  Google Scholar 

  14. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979

    CAS  Google Scholar 

  15. Sun H, Tang B, Wu P (2017) Two-dimensional zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties. ACS Appl Mater Interfaces 9(40):35075–35085

    CAS  Google Scholar 

  16. Kalaiselvimary J, Selvakumar K, Rajendran S, Sowmya G, Ramesh Prabhu M (2019) Effect of surface-modified montmorillonite incorporated biopolymer membranes for PEM fuel cell applications. Polym Compos 40(S1):E301–E311

    CAS  Google Scholar 

  17. Li T, Yang Y (2009) A novel inorganic/organic composite membrane tailored by various organic silane coupling agents for use in direct methanol fuel cells. J Power Sources 187(2):332–340

    CAS  Google Scholar 

  18. Kim H-J, Shul Y-G, Han H (2006) Sulfonic-functionalized heteropolyacid–silica nanoparticles for high temperature operation of a direct methanol fuel cell. J Power Sources 158(1):137–142

    CAS  Google Scholar 

  19. Sun L, Boo WJ, Browning RL, Sue H-J, Clearfield A (2005) Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater 17(23):5606–5609

    CAS  Google Scholar 

  20. Sun L, O'Reilly JY, Kong D, Su JY, Boo WJ, Sue HJ, Clearfield A (2009) The effect of guest molecular architecture and host crystallinity upon the mechanism of the intercalation reaction. J Colloid Interface Sci 333(2):503–509

    CAS  Google Scholar 

  21. Hu H, Martin JC, Xiao M, Southworth CS, Meng Y, Sun L (2011) Immobilization of Ionic Liquids in Layered Compounds via Mechanochemical Intercalation. J Phys Chem C 115(13):5509–5514

    CAS  Google Scholar 

  22. Hu H, Martin JC, Zhang M, Southworth CS, Xiao M, Meng Y, Sun L (2012) Immobilization of ionic liquids in θ-zirconium phosphate for catalyzing the coupling of CO2 and epoxides. RSC Adv 2(9):3810–3815

    CAS  Google Scholar 

  23. Sun L, Boo WJ, Sue H-J, Clearfield A (2007) Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem 31(1):39–43

    CAS  Google Scholar 

  24. Yu J, Xiang L, Martin BR, Clearfield A, Sun L (2015) Direct growth of layered intercalation compounds via single step one-pot in situ synthesis. Chem Commun 51(57):11398–11400

    CAS  Google Scholar 

  25. Qiang W, Yu J, Liu J, Guo Z, Umar A, Sun L (2013) Na+ and K+-exchanged zirconium phosphate (zrp) as high-temperature co2 adsorbents. Sci Adv Mater 5(5):469–474

    Google Scholar 

  26. Sun L, Boo W-J, Liu J, Clearfield A, Sue H-J, Verghese N, Pham H, Bicerano J (2009) Effect of nanoplatelets on the rheological behavior of epoxy monomers. Macromol Mater Eng 294:103–113

    CAS  Google Scholar 

  27. Moghbelli E, Sun L, Jiang H, Boo WJ, Sue H-J (2009) Scratch behavior of epoxy nanocomposites containing α-zirconium phosphate and core-shell rubber particles. Polym Eng Sci 49(3):483–490

    CAS  Google Scholar 

  28. Wei S, Lizu M, Zhang X, Sampathi J, Sun L (2013) Electrospun poly(vinyl alcohol)/α-zirconium phosphate nanocomposite fibers. High Performance Polymers 25:25–32. https://doi.org/10.1177/0954008312454152

  29. Boo WJ, Sun L, Warren GL, Moghbelli E, Pham H, Clearfield A, Sue HJ (2007) Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer 48(4):1075–1082

    CAS  Google Scholar 

  30. Sun L, Boo WJ, Clearfield A, Sue HJ, Pham HQ (2008) Barrier properties of model epoxy nanocomposites. J Membr Sci 318(1-2):129–136

    CAS  Google Scholar 

  31. Sun L, Sue HJ (2010) Permeation Properties of Epoxy Nanocomposites. In: Mittal V (ed) Barrier properties of polymer clay nanocomposites. Nova Science Publishers, New York

    Google Scholar 

  32. Casciola M, Bagnasco G, Donnadio A, Micoli L, Pica M, Sganappa M, Turco M (2009) Conductivity and methanol permeability of nafion–zirconium phosphate composite membranes containing high aspect ratio filler particles. Fuel Cells 9(4):394–400

    CAS  Google Scholar 

  33. Alberti G, Casciola M, Capitani D, Donnadio A, Narducci R, Pica M, Sganappa M (2007) Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochim Acta 52(28):8125–8132

    CAS  Google Scholar 

  34. Hill ML, Kim YS, Einsla BR, McGrath JE (2006) Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells. J Membr Sci 283(1–2):102–108

    CAS  Google Scholar 

  35. Tripathi BP, Shahi VK (2007) SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. J Colloid Interface Sci 316(2):612–621

    CAS  Google Scholar 

  36. Anilkumar GM, Nakazawa S, Okubo T, Yamaguchi T (2006) Proton conducting phosphated zirconia–sulfonated polyether sulfone nanohybrid electrolyte for low humidity, wide-temperature PEMFC operation. Electrochem Commun 8(1):133–136

    CAS  Google Scholar 

  37. Yu J, Sun L (2019) Facile one-pot synthesis of silver nanoparticles supported on α-Zirconium Phosphate Single-Layer Nanosheets. ES Mater Manuf 5:24–28

    Google Scholar 

  38. Lu N, Lin K-Y, Kung C-C, Jhuo J-W, Zhou Y, Liu J, Sun L (2014) Intercalated polyfluorinated Pd complexes in α-zirconium phosphate for Sonogashira and Heck reactions. RSC Adv 4(52):27329–27336

    CAS  Google Scholar 

  39. Zhou Y, Liu J, Xiao M, Meng Y, Sun L (2016) Designing supported ionic liquids (ILs) within inorganic nanosheets for CO2 capture applications. ACS Appl Mater Interfaces 8(8):5547–5555. https://doi.org/10.1021/acsami.5b11249

  40. Zhou Y, Liu J, Huang R, Zhang M, Xiao M, Meng Y, Sun L (2017) Covalently immobilized ionic liquids on single layer nanosheets for heterogeneous catalysis applications. Dalton Trans 46(38):13126–13134

    CAS  Google Scholar 

  41. Zhou Y, Noshadi I, Ding H, Liu J, Parnas R, Clearfield A, Xiao M, Meng Y, Sun L (2018) Solid acid catalyst based on single-layer α-zirconium phosphate nanosheets for biodiesel production via esterification. Catalysts 8(1):17

    Google Scholar 

  42. Zhou Y, Ding H, Liu J, LaChance AM, Xiao M, Meng Y, Sun L (2019) Gold nanoparticles immobilized on single-layer α-zirconium phosphate nanosheets as a highly effective heterogeneous catalyst. Adv Compos Hybrid Mater 2(3):520–529

    CAS  Google Scholar 

  43. Boo W, Sun L, Liu J, Clearfield A, Sue H, Mullins M, Pham H (2007) Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites. Compos Sci Technol 67(2):262–269

    CAS  Google Scholar 

  44. Boo WJ, Sun L, Liu J, Moghbelli E, Clearfield A, Sue H-J, Pham H, Verghese N (2007) Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. J Polym Sci B Polym Phys 45(12):1459–1469

    CAS  Google Scholar 

  45. Sun L, Boo WJ, Sun D, Clearfield A, Sue H-J (2007) Preparation of Exfoliated Epoxy/α-Zirconium Phosphate Nanocomposites Containing High Aspect Ratio Nanoplatelets. Chem Mater 19(7):1749–1754

    CAS  Google Scholar 

  46. Xu Y, Lin L, Zeng S, Liu J, Xiao M, Wang S, Meng Y, Sun L (2019) Synthesis of polylactide nanocomposites using an α-zirconium phosphate nanosheet-supported zinc catalyst via in situ polymerization. ACS App Polymer Mater 1(6):1382–1389

    CAS  Google Scholar 

  47. Zhou Y, Wang A, Wang Z, Chen M, Wang W, Sun L, Liu X (2015) Titanium functionalized α-zirconium phosphate single layer nanosheets for photocatalyst applications. RSC Adv 5(114):93969–93978

    CAS  Google Scholar 

  48. Sun L, Liu J, Kirumakki SR, Schwerdtfeger ED, Howell RJ, Al-Bahily K, Miller SA, Clearfield A, Sue H-J (2009) Polypropylene nanocomposites based on designed synthetic nanoplatelets. Chem Mater 21(6):11544–1161. https://doi.org/10.1021/cm803024e

  49. Garcia ME, Naffin JL, Deng N, Mallouk TE (1995) Preparative-scale separation of enantiomers using intercalated .alpha.-Zirconium Phosphate. Chem Mater 7(10):1968–1973

    CAS  Google Scholar 

  50. Ding H, Khan ST, Aguirre KN, Camarda RS, Gafney JB, Clearfield A, Sun L (2020) Exfoliation of alpha-zirconium phosphate using tetraalkylammonium hydroxides. Inorg Chem 59(11):7822–7829

    CAS  Google Scholar 

  51. Zhou Y, Huang R, Ding F, Brittain AD, Liu J, Zhang M, Xiao M, Meng Y, Sun L (2014) Sulfonic acid-functionalized α-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications. ACS Appl Mater Interfaces 6(10):7417–7425

    CAS  Google Scholar 

  52. Tripathi BP, Kumar M, Shahi VK (2009) Highly stable proton conducting nanocomposite polymer electrolyte membrane (PEM) prepared by pore modifications: an extremely low methanol permeable PEM. J Membr Sci 327(1–2):145–154

    CAS  Google Scholar 

  53. Sharma A, Thampi SP, Suggala SV, Bhattacharya PK (2004) Pervaporation from a dense membrane:? Roles of Permeant?Membrane Interactions, Kelvin Effect, and Membrane Swelling. Langmuir Acs J Surf Colloids 20(11):4708–4714

    CAS  Google Scholar 

  54. Sun L, Thrasher JS (2005) Studies of the thermal behavior of Nafion® membranes treated with aluminum(III). Polym Degrad Stab 89(1):43–49

    CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. Abraham Clearfield at Texas A&M University for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuezhong Meng or Luyi Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest.

Declaration of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 0.99 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, F., Hu, H., Ding, H. et al. Sulfonated poly(fluorene ether ketone) (SPFEK)/α-zirconium phosphate (ZrP) nanocomposite membranes for fuel cell applications. Adv Compos Hybrid Mater 3, 546–550 (2020). https://doi.org/10.1007/s42114-020-00184-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00184-y

Keywords

Navigation