Skip to main content
Log in

Cold crystallization kinetics of biodegradable polymer blend; controlled by reactive interactable and nano nucleating agent

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) is famous for its crystalline nature and ability to show exothermic crystallization (cold crystallization) peak during heating cycle of differential scanning calorimetric study. To get an insight into the mechanism of cold crystallization of PLA in its promising forms like biodegradable blend and biodegradable blend nanocomposite, a kinetic study has conducted and reported in the present study. Biodegradable blend of PLA has prepared with poly(hydroxybutyrate) (PHB). Subsequently, blend nanocomposite has prepared using organically modified layered nano silicate. Maleic anhydride has used as a reactive compatibilization agent to modify the interface of the partially miscible blend of PLA and PHB. Kinetics and mechanism of crystallization have monitored through isothermal cold crystallization method on the basis of Avrami relationship. Avrami exponent ‘n’ and equilibrium rate constant ‘K’ value has taken into consideration to quantify the crystallization rate. The half-life of crystallization and equilibrium melting point also has estimated as additional findings to confirm the estimated rate of crystallization. Variation in the energy of activation (Ea) using Arrhenius relation and regime transitions during crystallization process through Lauritzen–Hoffman (L-H) equation also have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nam JY, Ray S, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromol 36:7126–7131

    Article  CAS  Google Scholar 

  2. Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Dubois P (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Poly Degr Stab 87:535–542

    Article  CAS  Google Scholar 

  3. Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization and properties. Macromol 35:3104–3110

    Article  CAS  Google Scholar 

  4. Ray SS, Yamada K, Okamoto M, Fujimoto Y, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polym 44:6633–6646

    Article  Google Scholar 

  5. Ueda K, Ray SS, Yamada K, Okamoto M (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polym 44:857–866

    Article  Google Scholar 

  6. Vaia RA, Teukolsky RK, Giannelis EP (1994) Interlayer structure and molecular environment of Alkylammonium layered silicates. Chem Mat 6:1017–1022

    Article  CAS  Google Scholar 

  7. Yoshida O, Okamoto M (2006) Direct melt intercalation of polylactide chains into nano-galleries: interlayer expansion and nanocomposite structure. Macromol Rap Comm 27:751–757

    Article  CAS  Google Scholar 

  8. Hongzhi L, Wenjia S, Feng C, Li G, Jinwen Z (2011) Interaction of microstructure and interfacial adhesion on impact performance of Polylactide (PLA) ternary blends. Macromol 44:1513–1522

    Article  Google Scholar 

  9. Ohkoshi I, Abe H, Doi Y (2000) Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polym 41:5985–5992

    Article  CAS  Google Scholar 

  10. Koyama N, Doi Y (1997) Miscibility of binary blends of poly[(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid]. Polym 38:1589–1593

    Article  CAS  Google Scholar 

  11. Zhang L, Xiong C, Deng X (1996) Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends. Polym 37:235–241

    Article  CAS  Google Scholar 

  12. Phuong NT, Guinault A, Sollogoub C (2011) Miscibility and morphology of poly (lactic acid)∕ poly (β-hydroxybutyrate) blends. Int. AIP Conf Proc 11:1315–1317

    Google Scholar 

  13. Rhim JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Sci and Tech 42:612–617

    Article  CAS  Google Scholar 

  14. Zhao H, Cui Z, Wang X, Turng LS, Peng X (2013) Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay Nanocomposites. Comp Part B: Eng 51:79–91

    Article  CAS  Google Scholar 

  15. Carmen MO, Müller JBL, Fabio Y (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind Crop and Prod 33:605–610

  16. Jandas PJ, Mohanty S, Nayak SK (2013) Rheological and mechanical characterization of renewable resource-based high molecular weight PLA nanocomposites. Journal of Polymers 2013. https://doi.org/10.1155/2013/403467

    Article  Google Scholar 

  17. Jandas PJ, Mohanty S, Nayak SK (2013) Sustainability, compostability and specific microbial activity on agricultural mulch films prepared from poly(lactic acid). Ind Eng Chem Res 52:17714–17724

    Article  CAS  Google Scholar 

  18. Mohanty AK, Lawrence TD, Shrojal MD, Manjusri M, Prasad M (2005) Anhydride functionalized polyhydroxyalkanoates, preparation and use thereof." U. S. A Patent Application 11(/056):622

    Google Scholar 

  19. Kolstad JJ (1996) Crystallization kinetics of poly(L-lactide-co-meso-lactide). J of Appl Polym Sci 62:1079–1091

    Article  CAS  Google Scholar 

  20. Jandas PJ, Mohanty S, Nayak SK (2013) Thermal properties and cold crystallization kinetics of surface treated banana fiber (BF) reinforced poly (lactic acid) (PLA) nanocomposites. J Therm Anal Calorim 114:1265–1278

    Article  CAS  Google Scholar 

  21. Lorenzo AT, Arnal ML (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polym Test 26:222–231

    Article  CAS  Google Scholar 

  22. Iannace S, Nicolais L (1997) Poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate)/poly-L-lactide blends: thermal and mechanical properties. J of Appl Polym Sci 64:911–919

    Article  CAS  Google Scholar 

  23. Jandas PJ, Mohanty S, Nayak SK (2013) Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. J Clean Prod 52:392–401

    Article  CAS  Google Scholar 

  24. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate Nanocomposites. Chem Mat 8:1728–1734

    Article  CAS  Google Scholar 

  25. Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Dubois P (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degr Stab 87:535–542

    Article  CAS  Google Scholar 

  26. Jandas PJ, Mohanty S, Nayak SK (2014) Morphology and thermal properties of renewable resource-based polymer blend Nanocomposites influenced by a reactive Compatibilizer. ACS Sust Chem Eng 2:377–386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Jandas.

Ethics declarations

Statement on conflict of interest

The authors do not have any conflict of interest related to the present research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jandas, P.J., Mohanty, S. & Nayak, S.K. Cold crystallization kinetics of biodegradable polymer blend; controlled by reactive interactable and nano nucleating agent. Adv Compos Hybrid Mater 1, 624–634 (2018). https://doi.org/10.1007/s42114-018-0048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0048-z

Keywords

Navigation