Skip to main content
Log in

Mecano-reliability analysis applied to RC tank under seismic loads according to the Algerian seismic standard

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The deterministic methods used in the design codes of concrete storage tanks on ground are based on the principle of safety coefficients. These deterministic analyses are subject to uncertainties related to the assessment of seismic loading. To analyze the reliability of these structures, one proposes in this study a probabilistic approach by considering two variables, the hydraulic static load inside the tank and the seismic acceleration of the soil. The reliability analysis is conducted using a computer code developed with Matlab© software based on the Monte Carlo simulation method. The failure probability is evaluated at different time of the day for each limit state function considered in this work. Fragility curves are developed representing the failure probability at the different levels of seismic acceleration for different types of soil. The study concludes that there is no soil type effect on the failure risk evaluation, and that the failure mode by sloshing is the most prejudicial failure risk for the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ahmadi, H., Mohammadi, A. H., & Yeganeh, A. (2015). Probability density functions of SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to axial loading. Thin-Walled Structures, 94, 485–499.

    Article  Google Scholar 

  • Algerian seismic code (RPA99/2003). (2003). D.T.R.-B.C. 2.48. National Center for Applied Research in Earthquake Engineering (CGS), Algiers, Algeria. (OPU). ISBN:9961-923-13-8).

  • Aliche, A. (2016). Contribution à l’analyse de l’évolution de la vulnérabilité des réservoirs en béton dans leur cycle de vie. Ph.D thesis, Mouloud Mammeri University of Tizi-Ouzou, Algeria.

  • ASCE. (2010). Minimum design loads for buildings and other structures (pp. 7–16). Reston: ASCE/SEI.

    Google Scholar 

  • Breysse, D. (2009). Maîtrise des risques en génie civil. Hermès Science publications-Lavoisier ed, France.

  • Choi, I. K., Choun, Y. S., Ahn, S. M., & Seo, J. M. (2006). Seismic fragility analysis of a CANDU type NPP containment building for near-fault ground motions. KSCE Journal of Civil Engineering, 10(2), 105–112.

    Article  Google Scholar 

  • Cremona, C. (2012). Structural performance: Probability-based assessment. Oxford: Wiley.

    Google Scholar 

  • Dupont, A. (1979). Hydraulique (urbaine ed.). France: Eyrolles.

    Google Scholar 

  • Eurocode-8. (2003). Design of structures for earthquake resistance, part 4: silos, tanks and pipelines. Brussels: European Committee for Standardization.

  • Fascicule 74. (1998). Construction des réservoirs en béton—cahier des clauses techniques générales. Ministère de l’équipement des transports et du logement, Paris, France.

  • Gholizad, A., Golafshani, A., & Akrami, V. (2012). Structural reliability of offshore platforms considering fatigue damage and different failure scenarios. Ocean Engineering, 46, 1–8.

    Article  Google Scholar 

  • Hamdan, F. H. (2000). Seismic behavior of cylindrical steel liquid storage tanks. Journal of Constructional Steel Research, 53(3), 307–333.

    Article  MathSciNet  Google Scholar 

  • Hammoum, H., Bouzelha, K., & Hannachi, N. E. (2010). Analyse hydrodynamique d’un réservoir circulaire en béton arme, posé au sol. Annales du BTP, 2(3), 13–22.

    Google Scholar 

  • Hammoum, H., Bouzelha, K., & Slimani, D. (2016). Seismic risk of rc water storage elevated tanks: Case study. Handbook of materials failure analysis with case studies from the chemicals, concrete and power industries, 187–216.

  • He, W., Liu, L. C., & Yang, J. P. (2013). Reliability analysis of stiffened tank-roof stability with multiple random variables using minimum distance and Lagrange methods. Engineering Failure Analysis, 32, 304–311.

    Article  Google Scholar 

  • Housner, G. W. (1963). The dynamic behavior of water tanks. Bulletin of the Seismological Society of America, 53(2), 381–387.

    Google Scholar 

  • JCSS. (2001). Probabilistic model code. Joint Committee on Structural Safety., http://www.jcss.ethz.ch/JCSSPublications/PMC/PMC.html.

  • Lemaire, M., Chateauneuf, A., & Mitteau, J. C. (2009). Structural reliability. London: Wiley.

    Book  Google Scholar 

  • Lupoi, A., & Callari, C. (2011). Probabilistic method for the seismic assessment of existing concrete gravity dams. Structure and Infrastructure Engineering, 8(10), 985–998.

    Google Scholar 

  • Monteiro, R., Delgado, R., & Pinho, R. (2016). Probabilistic seismic assessment of RC bridges: Part I—Uncertainty models. Structures Elsevier, 5, 258–273.

    Article  Google Scholar 

  • Nachtigall, I., Gebbeken, N., & Urrutia-Galicia, J. L. (2003). On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base. Engineering Structures, 25(2), 201–213.

    Article  Google Scholar 

  • Nielson, B. G., & DesRoches, R. (2007). Seismic fragility methodology for highway bridges using a component level approach. Earthquake Engineering and Structural Dynamics, 36(6), 823–839.

    Article  Google Scholar 

  • NZS 1170.5. (2004). Structural design actions Part 5: Earthquake actions—New Zealand. New Zealand Standard (NZS).

  • Ormeño, M., Larkin, T., & Chouw, N. (2015). Evaluation of seismic ground motion scaling procedures for linear time-history analysis of liquid storage tanks. Engineering Structures, 102, 266–277.

    Article  Google Scholar 

  • Peyras, L., Carvajal, C., Felix, H., Bacconnet, C., Royet, P., Becue, J. P., et al. (2012). Probability-based assessment of dam safety using combined risk analysis and reliability methods—Application to hazards studies. European Journal of Environmental and Civil Engineering, 16(7), 795–817.

    Article  Google Scholar 

  • Razzaghi, M. S., & Eshghi, S. (2014). Probabilistic seismic safety evaluation of precode cylindrical oil tanks. Journal of Performance of Constructed Facilities, 29(6), 1–7.

    Google Scholar 

  • Sezen, H., Livaoglu, R., & Dogangun, A. (2008). Dynamic analysis and seismic performance evaluation of above-ground liquid-containing tanks. Engineering Structures, 30, 794–803.

    Article  Google Scholar 

  • Tan, G. H., Thevendran, V., Das Gupta, N. C., & Thambiratnam, D. P. (1993). Design of reinforced concrete cylindrical water tanks for minimum material cost. Computers & Structures, 48, 803–810.

    Article  Google Scholar 

  • Wang, J., & Lin, M. (2018). Seismic probabilistic risk analysis and application in a nuclear power plant. Nuclear Technology, 1–11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocine Hammoum.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliche, A., Hammoum, H. & Bouzelha, K. Mecano-reliability analysis applied to RC tank under seismic loads according to the Algerian seismic standard. Asian J Civ Eng 20, 395–408 (2019). https://doi.org/10.1007/s42107-018-00113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-018-00113-x

Keywords

Navigation