Skip to main content
Log in

Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

We introduce an efficient boundary-adapted spectral method for peridynamic transient diffusion problems with arbitrary boundary conditions. The spectral approach transforms the convolution integral in the peridynamic formulation into a multiplication in the Fourier space, resulting in computations that scale as O(N log N). The limitation of regular spectral methods to periodic problems is eliminated using the volume penalization method. We show that arbitrary boundary conditions or volume constraints can be enforced in this way to achieve high levels of accuracy. To test the performance of our approach we compare the computational results with analytical solutions of the nonlocal problem. The performance is tested with convergence studies in terms of nodal discretization and the size of the penalization parameter in problems with Dirichlet and Neumann boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gourley S, So J-H, Wu J (2004) Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics. J Math Sci 124(4):5119–5153

    MathSciNet  MATH  Google Scholar 

  2. Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38(6):534–570

    MathSciNet  MATH  Google Scholar 

  3. Colombo RM, Garavello M, Lécureux-Mercier M (2012) A class of nonlocal models for pedestrian traffic. Mathematical Models and Methods in Applied Sciences 22(04):1150023

    MathSciNet  MATH  Google Scholar 

  4. Carrillo JA, Fornasier M, Rosado J, Toscani G (2010) Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J Math Anal 42(1):218–236

    MathSciNet  MATH  Google Scholar 

  5. Cucker F, Smale S (2007) Emergent behavior in flocks. IEEE Trans Autom Control 52(5):852–862

    MathSciNet  MATH  Google Scholar 

  6. Shvydkoy R, Tadmor E (2018) Eulerian dynamics with a commutator forcing III. Fractional diffusion of order 0< α< 1. Physica D: Nonlinear Phen 376:131–137

    MathSciNet  MATH  Google Scholar 

  7. Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5):425–435

    MathSciNet  MATH  Google Scholar 

  8. Romano G, Barretta R (2017) Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Composites Part B 114:184–188

    Google Scholar 

  9. Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149

    Google Scholar 

  10. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Sol 48(1):175–209

    MathSciNet  MATH  Google Scholar 

  11. Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract 196(1–2):59–98

    Google Scholar 

  12. Bažant ZP (1991) Why continuum damage is nonlocal: micromechanics arguments. J Eng Mech 117(5):1070–1087

    Google Scholar 

  13. Bobaru F, Foster JT, Geubelle PH, Silling SA (2016) Handbook of peridynamic modeling. CRC Press, Florida

    MATH  Google Scholar 

  14. Silling SA, Lehoucq R (2010) Peridynamic theory of solid mechanics. In Advances in Applied Mechanics (Vol. 44, pp. 73-168). Elsevier, Amsterdam

    Google Scholar 

  15. Zhang G, Gazonas GA, Bobaru F (2018) Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: a peridynamic analysis. Inter J Impact Engin 113:73–87

    Google Scholar 

  16. Xu Z, Zhang G, Chen Z, Bobaru F (2018) Elastic vortices and thermally-driven cracks in brittle materials with peridynamics. Int J Fract 209(1–2):203–222

    Google Scholar 

  17. Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6):1156–1168

    Google Scholar 

  18. Mehrmashhadi J, Tang Y, Zhao X, Xu Z, Pan JJ, Van Le Q et al (2019) The effect of solder joint microstructure on the drop test failure—a peridynamic analysis. IEEE Trans Compon Packag Manuf Technol 9(1):58–71

    Google Scholar 

  19. Kamensky D, Behzadinasab M, Foster JT, Bazilevs Y (2019) Peridynamic modeling of frictional contact. J Peridy Nonloc Model 1:107–121. https://doi.org/10.1007/s42102-019-00012-y

    Article  Google Scholar 

  20. Zhang G, Le Q, Loghin A, Subramaniyan A, Bobaru F (2016) Validation of a peridynamic model for fatigue cracking. Eng Fract Mech 162:76–94

    Google Scholar 

  21. Behzadinasab M, Vogler TJ, Peterson AM, Rahman R, Foster JT (2018) Peridynamics modeling of a shock wave perturbation decay experiment in granular materials with intra-granular fracture. J Dynam Behav Mat 4(4):529–542

    Google Scholar 

  22. Chen Z, Niazi S, Zhang G, Bobaru F (2018) Peridynamic functionally graded and porous materials: modeling fracture and damage. In: Voyiadjis G (ed) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer International Publishing, Berlin, pp. 1353–1387. https://doi.org/10.1007/978-3-319-22977-5_36-1

  23. Chen Z, Niazi S, Bobaru F (2019) A peridynamic model for brittle damage and fracture in porous materials. Int J Rock Mech Min 122:104059

  24. Bobaru F, Mehrmashadi J, Chen Z, Niazi S (2018) Intraply fracture in fiber-reinforced composites: a peridynamic analysis. In ASC 33rd Annual Technical Conference & 18th US-Japan Conference on Composite Materials, Seattle, p 9

    Google Scholar 

  25. Mehrmashhadi J, Chen Z, Zhao J, Bobaru F (2019) A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites. Compos Sci Technol 182:107770

    Google Scholar 

  26. Chen Z, Bobaru F (2015) Peridynamic modeling of pitting corrosion damage. J Mech Phys Sol 78:352–381

    MathSciNet  Google Scholar 

  27. Jafarzadeh S, Chen Z, Bobaru F (2018) Peridynamic modeling of repassivation in pitting corrosion of stainless steel. Corrosion 74(4):393–414

    Google Scholar 

  28. Jafarzadeh S, Chen Z, Bobaru F (2018) Peridynamic modeling of intergranular corrosion damage. J Electrochem Soc 165(7):C362–C374

    Google Scholar 

  29. Jafarzadeh S, Chen Z, Zhao J, Bobaru F (2019) Pitting, lacy covers, and pit merger in stainless steel: 3D peridynamic models. Corros Sci 150:17–31

    Google Scholar 

  30. Jafarzadeh S, Chen Z, Bobaru F (2019) Computational modeling of pitting corrosion. Corros Rev 37(5):419–439. https://doi.org/10.1515/corrrev-2019-0049

  31. Silling SA (2014) Origin and effect of nonlocality in a composite. J Mech Mater Struct 9(2):245–258

    Google Scholar 

  32. Silling SA (2016) Why peridynamics? In: Bobaru F, Foster JT, Geubelle PH, Silling SA (eds) Handbook of Peridynamic Modeling (pp. 41-62). Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  33. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Google Scholar 

  34. Seleson P, Littlewood DJ (2016) Convergence studies in meshfree peridynamic simulations. Comput Math Appl 71(11):2432–2448

    MathSciNet  Google Scholar 

  35. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178

    MathSciNet  Google Scholar 

  36. De Meo D, Oterkus E (2017) Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Eng 135:76–83

    Google Scholar 

  37. Chen X, Gunzburger M (2011) Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput Methods Appl Mech Eng 200(9–12):1237–1250

    MathSciNet  MATH  Google Scholar 

  38. Du Q, Tian L, Zhao X (2013) A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J Numer Anal 51(2):1211–1234

    MathSciNet  MATH  Google Scholar 

  39. Ren B, Wu C, Askari E (2017) A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis. Inter J Impact Engin 99:14–25

    Google Scholar 

  40. Kilic B, Madenci E (2010) Coupling of peridynamic theory and the finite element method. J Mech Mater Struct 5(5):707–733

    Google Scholar 

  41. Galvanetto U, Mudric T, Shojaei A, Zaccariotto M (2016) An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems. Mech Res Commun 76:41–47

    Google Scholar 

  42. Canuto C, Hussaini MY, Quarteroni A, Thomas A Jr (2012) Spectral methods in fluid dynamics. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  43. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19(90):297–301

    MathSciNet  MATH  Google Scholar 

  44. Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

    Google Scholar 

  45. Du Q, Yang J (2016) Asymptotically compatible Fourier spectral approximations of nonlocal Allen--Cahn equations. SIAM J Numer Anal 54(3):1899–1919

    MathSciNet  MATH  Google Scholar 

  46. Sharma L, Peerlings RH, Shanthraj P, Roters F, Geers MG (2018) FFT-based interface decohesion modelling by a nonlocal interphase. Adv Model Simul Engin Sci 5(1):7

    MATH  Google Scholar 

  47. Du Q, Yang J (2017) Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications. J Comput Phys 332:118–134

    MathSciNet  MATH  Google Scholar 

  48. Coclite GM, Fanizzi A, Lopez L, Maddalena F, Pellegrino SF (2018) Numerical methods for the nonlocal wave equation of the peridynamics. Appl Numer Math. https://doi.org/10.1016/j.apnum.2018.11.007

  49. Slevinsky RM, Montanelli H, Du Q (2018) A spectral method for nonlocal diffusion operators on the sphere. J Comput Phys 372:893–911

    MathSciNet  MATH  Google Scholar 

  50. Alali, B., & Albin, N. (2019). Fourier spectral methods for nonlocal models. arXiv preprint arXiv:1907.11998

  51. Bueno-Orovio A, Kay D, Burrage K (2014) Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer Math 54(4):937–954

    MathSciNet  MATH  Google Scholar 

  52. Wang H, Tian H (2014) A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model. Comput Methods Appl Mech Eng 273:19–36

    MathSciNet  MATH  Google Scholar 

  53. Wang H (2018) Peridynamics and nonlocal diffusion models: fast numerical methods. In: Voyiadjis GZ (ed) Handbook of Nonlocal Continuum Mechanics for Materials and Structures (Vol. 2). Springer International Publishing, Berlin, pp 1331–1352. https://doi.org/10.1007/978-3-319-22977-5_35-1

  54. Kevlahan NK-R, Ghidaglia J-M (2001) Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. Euro J Mech-B/Fluids 20(3):333–350

    MATH  Google Scholar 

  55. Bueno-Orovio A, Perez-Garcia VM, Fenton FH (2006) Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method. SIAM J Sci Comput 28(3):886–900

    MathSciNet  MATH  Google Scholar 

  56. Yu HC, Chen HY, Thornton K (2012) Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Model Simul Mater Sci Eng 20(7):075008

    Google Scholar 

  57. Brinkman H (1949) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion 1(1):27

    MATH  Google Scholar 

  58. Angot P, Bruneau C-H, Fabrie P (1999) A penalization method to take into account obstacles in incompressible viscous flows. Numer Math 81(4):497–520

    MathSciNet  MATH  Google Scholar 

  59. Schneider K (2005) Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method. Comput Fluids 34(10):1223–1238

    MATH  Google Scholar 

  60. Kolomenskiy D, Schneider K (2009) A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles. J Comput Phys 228(16):5687–5709

    MathSciNet  MATH  Google Scholar 

  61. Schneider K, Neffaa S, Bos WJ (2011) A pseudo-spectral method with volume penalisation for magnetohydrodynamic turbulence in confined domains. Comput Phys Commun 182(1):2–7

    MathSciNet  MATH  Google Scholar 

  62. Kadoch B, Kolomenskiy D, Angot P, Schneider K (2012) A volume penalization method for incompressible flows and scalar advection–diffusion with moving obstacles. J Comput Phys 231(12):4365–4383

    MathSciNet  MATH  Google Scholar 

  63. Engels T, Kolomenskiy D, Schneider K, Lehmann F-O, Sesterhenn J (2016) Bumblebee flight in heavy turbulence. Phys Rev Lett 116(2):028103

    Google Scholar 

  64. Ravi S, Kolomenskiy D, Engels T, Schneider K, Wang C, Sesterhenn J et al (2016) Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci Rep 6:35043

    Google Scholar 

  65. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2012) Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev 54(4):667–696

    MathSciNet  MATH  Google Scholar 

  66. Radu P, Wells K (2019) A doubly nonlocal Laplace operator and its connection to the classical laplacian. J Integ Eq Appli 31(3):379–409. https://projecteuclid.org/euclid.jiea/1536804038

  67. Zhao J, Chen Z, Mehrmashhadi J, Bobaru F (2018) Construction of a peridynamic model for transient advection-diffusion problems. Int J Heat Mass Transf 126:1253–1266

    Google Scholar 

  68. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences 23(03):493–540

    MathSciNet  MATH  Google Scholar 

  69. Oterkus S, Madenci E, Agwai A (2014) Peridynamic thermal diffusion. J Comput Phys 265:71–96

    MathSciNet  MATH  Google Scholar 

  70. Le Q, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture. Comput Mech 61(4):499–518

    MathSciNet  MATH  Google Scholar 

  71. Aksoylu B, Celiker F, Kilicer O (2019) Nonlocal operators with local boundary conditions in higher dimensions. Adv Comput Math 45(1):453–492

    MathSciNet  MATH  Google Scholar 

  72. Aksoylu B, Celiker F, Kilicer O (2018) Nonlocal operators with local boundary conditions: an overview. In: Voyiadjis GZ (ed) Handbook of Nonlocal Continuum Mechanics for Materials and Structures, vol 2, pp 1293–1330. https://doi.org/10.1007/978-3-319-22977-5_34-1

  73. Rabiner, L. R., & Gold, B. (1975). Theory and application of digital signal processing. Englewood Cliffs, NJ, Prentice-Hall, Inc, 1975. 777 p

  74. Proakis JG, Manolakis DG (1996) Digital signal processing: principles, algorithms, and applications (3rd Edition), 3rd edn. Prentice-hall international, inc, New Jersey

    Google Scholar 

  75. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods. Springer, Berlin

    MATH  Google Scholar 

  76. Chen Z, Bobaru F (2015) Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. Comput Phys Commun 197:51–60

    Google Scholar 

  77. Whittaker, E. T., & Watson, G. N. (1996). A course of modern analysis: Cambridge University Press

    Google Scholar 

Download references

Funding

This work has been supported by the AFOSR MURI Center for Materials Failure Prediction through Peridynamics (program managers Jaimie Tiley, David Stargel, Ali Sayir, Fariba Fahroo, and James Fillerup), by the ONR project #N00014-15-1-2034 “SCC: the Importance of Damage Evolution in the Layer Affected by Corrosion” (program manager William Nickerson), and by a Nebraska System Science award. The research of A.L. was supported in part by the NSF grant no. DMS-1716801.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam Larios or Florin Bobaru.

Electronic supplementary material

ESM 1

(MP4 1153 kb)

Appendices

Appendix 1. Boundary-adapted spectral method implementation for PD diffusion in MATLAB

Here the MATLAB implantation for boundary-adapted spectral method with volume penalization (BASM-VP) is provided. First, note that Eq. (23) can be directly used when the periodic domain of computation is [0, S), meaning the origin locates on the left end of the domain. If the domain of choice is [b, b + S), then the following modified form of Eq. (23) should be used:

$$ \frac{d{u}_i^N}{dt}=\nu {\mathbf{\mathcal{F}}}_{\boldsymbol{D}}^{-\mathbf{1}}\left({\overset{\sim }{\mu^s}}_k\tilde{u}_{k}\Delta x\right)-\nu \beta {u}_i^N+{f}_i^N $$
(67)

where \( {\overset{\sim }{\mu^s}}_k \) is the DFT of the shifted kernel function:

$$ {\mu}^s(x)=\mu \left(x-b\right) $$
(68)

The reason is that the DFT definitions that govern the FFT solvers are based on [0, S) domain. If b = 0, then the kernel function does not shift and Eq. (67) becomes identical to Eq. (23).

A MATLAB implementation of the peridynamic BASM with VP for the transient diffusion example in Section 5.2 is as follows:

  • Inputs:

  • Physical parameters: ν, δ, f(x, t), μ(x), L, tmax

  • Initial and boundary conditions: u(x, 0), \( u\left(-\frac{L}{2},0\right)={u}_{b1} \), \( u\left(\frac{L}{2},0\right)={u}_{b2} \)

  • BASM with VP parameters: N, ε

  • Initialization:

  • Calculate grid size: \( \Delta x=\frac{L+2\delta }{N} \) (length of the extended domain divided by N)

  • Calculate time step: Δt from Eq. (47) with ν, ε, and μ(x)

  • Discretize the extended domain: \( {x}_i=-\frac{L}{2}-\delta +\left(i-1\right)\Delta x \) and i = 1, 2, …, N

  • Shift the kernel function based on left-end of the extended domain and discretize: \( {\mu}_i^s=\mu \left({x}_i+\frac{L}{2}+\delta \right) \)

  • Discretize the initial condition and the Source term: \( {y}_i^0=u\left({x}_i,0\right) \); \( {f}_i^0=f\left({x}_i,0\right) \);

  • Fast Fourier transform \( {\mu}_i^s \) and \( {y}_i^0 \): \( {\overset{\sim }{\mu^s}}_k=\mathbf{FFT}\left({\mu}_i^s\right) \) and \( {\overset{\sim }{y^0}}_k=\mathbf{FFT}\left({y}_i^0\right) \)

  • Define constrained regions: \( {\Gamma}_1={x}_i\in \left[-\frac{L}{2}-\delta, -\frac{L}{2}\right) \) and \( {\Gamma}_2={x}_i\in \left(\frac{L}{2},\frac{L}{2}+\delta \right) \)

  • Define the main domain: \( \Omega ={x}_i\in \left[-\frac{L}{2},\frac{L}{2}\right] \)

  • Discretize the mask function: χi = χ(xi) from Eq. (25).

  • Calculate volume constraints on Γ1 and Γ2 from Eq. (58) and (59): uΓ1( Γ1, 0), uΓ2( Γ2, 0)

Define \( {y}_{\varGamma i}^0=\left\{\begin{array}{cc} Eq.\kern0.33em (58)& {x}_i\in \left[-\frac{L}{2}-\delta, -\frac{L}{2}\right)\\ {}0& {x}_i\in \left[-\frac{L}{2},\frac{L}{2}\right]\\ {} Eq.(59)& {x}_i\in \left(\frac{L}{2},\frac{L}{2}+\delta \right)\end{array}\right. \)

  • Initialize step counter: n = 0

  • Initialize time: tn = 0

  • Solve the transient diffusion: while tn < tmax

  • Update time: tn + 1 = tn + Δt

  • Update solution: \( {y}_i^{n+1}={y}_i^n+\Delta t\left[\nu \mathbf{FF}{\mathbf{T}}^{-\mathbf{1}}\left({\overset{\sim }{\mu^s}}_k{\overset{\sim }{y^n}}_k\Delta x\right)-\nu \beta {y}_i^n+{f}_i^n-\frac{\chi_i}{\varepsilon}\left({y}_i^n-{y}_{\Gamma, i}^n\right)\right] \)

  • Update the source term: \( {f}_i^{n+1}={f}_i\left({x}_i,{t}^{n+1}\right) \)

  • Update volume constraints:\( {y}_{\Gamma i}^{n+1}=\left\{\begin{array}{cc}\mathrm{Eq}.(58)&\ {x}_i\in \left[-\frac{L}{2}-\delta, -\frac{L}{2}\right)\\ {}0\kern3em &\ {x}_i\in \left[-\frac{L}{2},\frac{L}{2}\right]\kern3em \\ {}\mathrm{Eq}.(59)& {x}_i\in \left(\frac{L}{2},\frac{L}{2}+\delta \right)\kern1.25em \end{array}\right. \)

  • Fast Fourier transform \( {y}_i^{n+1} \): \( {\overset{\sim }{y^{n+1}}}_k=\mathbf{FFT}\left({y}_i^{n+1}\right) \)

  • Update step counter: n = n + 1

The algorithm above is for the example with Dirichlet BCs. The corresponding MATLAB code is provided in Online Resource 1. In the case of Neumann BCs Eqs. (58) and (59) are replaced with Eqs. (65) and (66).

Appendix 2. Discretization error versus penalization error in BASM-VP

To obtain a better understanding of error distribution on the domain for the example in Section 5.2, and the evolution of maximum error during the diffusion process (see Figs. 6 and 7), we conducted two more simulations: one simulation with a much smaller ε compared with the test Section 5.2, but the same N, and one simulation with a much larger N compared with that test, but the same ε. The first simulation reveals the error behavior with respect to the discretization, while the second one is focused on the penalization error.

Results for the first simulation with ε = 5 × 10−6, N = 29 are given in Fig. 11.

Fig. 11
figure 11

Time snapshots of the relative error dominated by discretization in 1D nonlocal diffusion problem in Section 5.2 at t = 5 (a), and t = 15 (b). The time-evolution of the maximum error in (c)

The second simulation is performed with ε = 5 × 10−4 and N = 215. Results are given in Fig. 12.

Fig. 12
figure 12

Time snapshots of the relative error dominated by penalization in 1D nonlocal diffusion problem shown in Section 5.2 at t = 5 (a), and t = 15 (b). The time-evolution of maximum error in (c)

The discretization error rapidly grows and then decays, while the penalization error grows near the boundaries and approaches a constant value in time. Comparing Figs. 11 and 12 with Figs. 6 and 7 in Section 5.2 (see also video 1) helps us to clearly identify the “mixture” of the penalization and discretization errors in the example corresponding to Figs. 6 and 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarzadeh, S., Larios, A. & Bobaru, F. Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods. J Peridyn Nonlocal Model 2, 85–110 (2020). https://doi.org/10.1007/s42102-019-00026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-019-00026-6

Keywords

Navigation