Skip to main content
Log in

Hepatokines: the missing link in the development of insulin resistance and hyperandrogenism in PCOS?

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

The liver plays a critical role in several metabolic pathways, including the regulation of glucose and lipid metabolism. Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide, is closely associated with insulin resistance (IR) and metabolic syndrome (MetS). Hepatokines, newly discovered proteins secreted by hepatocytes, have been linked to the induction of these metabolic dysregulations. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women of reproductive age, has been associated with NAFLD and IR, while hyperandrogenism additionally appears to be implicated in the pathogenesis of the latter. However, the potential role of hepatokines in the development of metabolic disorders in PCOS has not been fully investigated. Therefore, the aim of this review is to critically appraise the current evidence regarding the interplay of hepatokines with NAFLD, hyperandrogenism, and IR in PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zawadski JK, Dunaif A (1992) Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR (eds) Polycystic Ovary Syndrome. Blackwell Scientific Publications, Boston, pp 377–384

    Google Scholar 

  2. Anonymous (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47

    Article  Google Scholar 

  3. Anonymous (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81:19–25

    Article  Google Scholar 

  4. Azziz R, Carmina E, Dewailly D et al (2009) The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 9:456–488

    Article  Google Scholar 

  5. Rotterdam EA-SPCWG (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81:19–25

    Article  Google Scholar 

  6. Azziz R, Carmina E, Dewailly D et al (2006) Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab 91:4237–4245

    Article  CAS  PubMed  Google Scholar 

  7. Franks S (2006) Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: in defense of the Rotterdam criteria. J Clin Endocrinol Metab 91:786–789

    Article  CAS  PubMed  Google Scholar 

  8. Azziz R (2006) Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: the Rotterdam criteria are premature. J Clin Endocrinol Metab 91:781–785

    Article  CAS  PubMed  Google Scholar 

  9. Chang WY, Knochenhauer ES, Bartolucci AA et al (2005) Phenotypic spectrum of polycystic ovary syndrome: clinical and biochemical characterization of the three major clinical subgroups. Fertil Steril 83:1717–1723

    Article  PubMed  Google Scholar 

  10. Teede HJ, Misso ML, Costello MF et al (2018) Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 33:1602–1618

    Article  PubMed  PubMed Central  Google Scholar 

  11. Diamanti-Kandarakis E, Panidis D (2007) Unravelling the phenotypic map of polycystic ovary syndrome (PCOS): a prospective study of 634 women with PCOS. Clin Endocrinol (Oxf) 67:735–742

    Article  CAS  PubMed  Google Scholar 

  12. Conway GS, Honour JW, Jacobs HS (1989) Heterogeneity of the polycystic ovary syndrome: clinical, endocrine and ultrasound features in 556 patients. Clin Endocrinol (Oxf) 30:459–470

    Article  CAS  PubMed  Google Scholar 

  13. Dunaif A, Graf M, Mandeli J et al (1987) Characterization of groups of hyperandrogenic women with acanthosis nigricans, impaired glucose tolerance, and/or hyperinsulinemia. J Clin Endocrinol Metab 65:499–507

    Article  CAS  PubMed  Google Scholar 

  14. Broekmans FJ, Knauff EA, Valkenburg O et al (2006) PCOS according to the Rotterdam consensus criteria: Change in prevalence among WHO-II anovulation and association with metabolic factors. BJOG 113:1210–1217

    Article  CAS  PubMed  Google Scholar 

  15. Dunaif A (1997) Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 18:774–800

    CAS  PubMed  Google Scholar 

  16. Yildiz BO, Azziz R (2007) The adrenal and polycystic ovary syndrome. Rev Endocr Metab Disord 8:331–342

    Article  CAS  PubMed  Google Scholar 

  17. Legro RS (1998) Polycystic ovary syndrome: current and future treatment paradigms. Am J Obstet Gynecol 79:S101–S108

    Article  Google Scholar 

  18. Paschou SA, Polyzos SA, Anagnostis P et al (2020) Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Endocrine 67:1–8

    Article  CAS  PubMed  Google Scholar 

  19. Stefanaki K, Karagiannakis DS, Raftopoulou M et al (2023) Obesity and hyperandrogenism are implicated with anxiety, depression and food cravings in women with polycystic ovary syndrome. Endocrine 82:201–208

    Article  CAS  PubMed  Google Scholar 

  20. Zhao H, Zhang J, Cheng X et al (2023) Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res 16:9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rudnicka E, Suchta K, Grymowicz M et al (2021) Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci 22:3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ehrmann DA (2005) Polycystic ovary syndrome. N Engl J Med 352:1223–1236

    Article  CAS  PubMed  Google Scholar 

  23. Tomlinson J, Millward A, Stenhouse E et al (2010) Type 2 diabetes and cardiovascular disease in polycystic ovary syndrome: what are the risks and can they be reduced? Diabet Med 27:498–515

    Article  CAS  PubMed  Google Scholar 

  24. Legro RS, Kunselman AR, Dodson WC et al (1999) Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 84:165–169

    CAS  PubMed  Google Scholar 

  25. Diamanti-Kandarakis E, Dunaif A (2012) Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33:981–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nestler JE, Jakubowicz DJ (1996) Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med 335:617–623

    Article  CAS  PubMed  Google Scholar 

  27. Dunaif A, Graf M (1989) Insulin administration alters gonadal steroid metabolism independent of changes in gonadotropin secretion in insulin-resistant women with the polycystic ovary syndrome. J Clin Invest 83:23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lord JM, Flight IH, Norman RJ (2003) Insulin-sensitising drugs (metformin, troglitazone, rosiglitazone, pioglitazone, D-chiro-inositol) for polycystic ovary syndrome. Cochrane Database Syst Rev 3:CD003053

    Google Scholar 

  29. Palomba S, Falbo A, Zullo F et al (2009) Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review. Endocr Rev 30:1–50

    Article  CAS  PubMed  Google Scholar 

  30. Meex RCR, Watt MJ (2017) Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol 13:509–520

    Article  CAS  PubMed  Google Scholar 

  31. Khan MS, Knowles BB, Aden DP et al (1981) Secretion of testosterone-estradiol-binding globulin by a human hepatoma-derived cell line. J Clin Endocrinol Metab 53:448–449

    Article  CAS  PubMed  Google Scholar 

  32. Lazo M, Zeb I, Nasir K et al (2015) Association between endogenous sex hormones and liver fat in a multiethnic study of atherosclerosis. Clin Gastroenterol Hepatol 13:1686–93.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peter A, Kantartzis K, Machann J et al (2010) Relationships of circulating sex hormone-binding globulin with metabolic traits in humans. Diabetes 59:3167–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sutton-Tyrrell K, Wildman RP, Matthews KA et al (2005) Sex-hormone-binding globulin and the free androgen index are related to cardiovascular risk factors in multiethnic premenopausal and perimenopausal women enrolled in the Study of Women Across the Nation (SWAN). Circulation 111:1242–1249

    Article  CAS  PubMed  Google Scholar 

  35. Polyzos SA, Kountouras J, Tsatsoulis A et al (2013) Sex steroids and sex hormone-binding globulin in postmenopausal women with nonalcoholic fatty liver disease. Hormones 12:405–416

    Article  PubMed  Google Scholar 

  36. Ding EL, Song Y, Malik VS et al (2006) Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 295:1288–1299

    Article  CAS  PubMed  Google Scholar 

  37. Ding EL, Song Y, Manson JE et al (2009) Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med 361:1152–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Michos ED, Vaidya D, Gapstur SM et al (2008) Sex hormones, sex hormone binding globulin, and abdominal aortic calcification in women and men in the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 200:432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Perry JR, Weedon MN, Langenberg C et al (2010) Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Hum Mol Genet 19:535–544

    Article  CAS  PubMed  Google Scholar 

  40. Degirolamo C, Sabba C, Moschetta A (2016) Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 15:51–69

    Article  CAS  PubMed  Google Scholar 

  41. Mutanen A, Heikkila P, Lohi J et al (2014) Serum FGF21 increases with hepatic fat accumulation in pediatric onset intestinal failure. J Hepatol 60:183–190

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Yeung DC, Karpisek M et al (2008) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57:1246–1253

    Article  CAS  PubMed  Google Scholar 

  43. Chavez AO, Molina-Carrion M, Abdul-Ghani MA et al (2009) Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 32:1542–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iroz A, Couty JP, Postic C (2015) Hepatokines: unlocking the multi-organ network in metabolic diseases. Diabetologia 58:1699–1703

    Article  CAS  PubMed  Google Scholar 

  45. Arner P, Pettersson A, Mitchell PJ et al (2008) FGF21 attenuates lipolysis in human adipocytes - a possible link to improved insulin sensitivity. FEBS Lett 582:1725–1730

    Article  CAS  PubMed  Google Scholar 

  46. Kharitonenkov A, Shiyanova TL, Koester A et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Q, Zhang Y, Ding D et al (2016) Association between serum fibroblast growth factor 21 and mortality among patients with coronary artery disease. J Clin Endocrinol Metab 101:4886–4894

    Article  CAS  PubMed  Google Scholar 

  48. van Herpen NA, Schrauwen-Hinderling VB, Schaart G et al (2011) Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. J Clin Endocrinol Metab 96:E691–E695

    Article  PubMed  Google Scholar 

  49. Kim CS, Kwon Y, Choe SY et al (2015) Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr Metab (Lond) 12:33

    Article  PubMed  Google Scholar 

  50. Uyeda K, Yamashita H, Kawaguchi T (2002) Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol 63:2075–2080

    Article  CAS  PubMed  Google Scholar 

  51. Thomas A, Stevens AP, Klein MS et al (2012) Early changes in the liver-soluble proteome from mice fed a nonalcoholic steatohepatitis inducing diet. Proteomics 12:1437–1451

    Article  CAS  PubMed  Google Scholar 

  52. Selva DM, Hogeveen KN, Innis SM et al (2007) Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J Clin Invest 117:3979–3987

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaur P, Rizk NM, Ibrahim S et al (2012) iTRAQ-based quantitative protein expression profiling and MRM verification of markers in type 2 diabetes. J Proteome Res 11:5527–5539

    Article  CAS  PubMed  Google Scholar 

  54. Wente W, Efanov AM, Brenner M et al (2006) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55:2470–2478

    Article  CAS  PubMed  Google Scholar 

  55. Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340

    Article  CAS  PubMed  Google Scholar 

  56. Ibdah JA, Perlegas P, Zhao Y et al (2005) Mice heterozygous for a defect in mitochondrial trifunctional protein develop hepatic steatosis and insulin resistance. Gastroenterology 128:1381–1390

    Article  CAS  PubMed  Google Scholar 

  57. Zhang R (2012) Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun 424:786–792

    Article  CAS  PubMed  Google Scholar 

  58. Yi P, Park J-S, Melton DA (2013) Betatrophin: a hormone that controls pancreatic b cell proliferation. Cell 153:747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vatner DF, Goedeke L, Camporez JG et al (2018) Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia 61:1435–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuhan H, Abaci A, Anik A et al (2016) Circulating betatrophin concentration is negatively correlated with insulin resistance in obese children and adolescents. Diabetes Res Clin Pract 114:37–42

    Article  CAS  PubMed  Google Scholar 

  61. Morinaga J, Zhao J, Endo M et al (2018) Association of circulating ANGPTL 3, 4, and 8 levels with medical status in a population undergoing routine medical checkups: A cross-sectional study. PLoS One 13:e0193731

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jensen-Cody SO, Potthoff MJ (2021) Hepatokines and metabolism: deciphering communication from the liver. Mol Metab 44:101138

    Article  CAS  PubMed  Google Scholar 

  63. Hennige AM, Staiger H, Wicke C et al (2008) Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One 3:e1765

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dasgupta S, Bhattacharya S, Biswas A et al (2010) NF-kappaB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem J 429:451–462

    Article  CAS  PubMed  Google Scholar 

  65. Meex RC, Hoy AJ, Morris A et al (2015) Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab 22:1078–1089

    Article  CAS  PubMed  Google Scholar 

  66. Li L, Spranger L, Stobaus N et al (2021) Fetuin-B, a potential link of liver-adipose tissue cross talk during diet-induced weight loss-weight maintenance. Nutr Diabetes 11:31

    Article  PubMed  PubMed Central  Google Scholar 

  67. Peter A, Kovarova M, Staiger H et al (2018) The hepatokines fetuin-A and fetuin-B are upregulated in the state of hepatic steatosis and may differently impact on glucose homeostasis in humans. Am J Physiol Endocrinol Metab 314:E266–EE73

    Article  PubMed  Google Scholar 

  68. Jaberi SA, Cohen A, D'Souza C et al (2021) Lipocalin-2: structure, function, distribution and role in metabolic disorders. Biomed Pharmacother 142:112002

    Article  CAS  PubMed  Google Scholar 

  69. Ekim Ustunel B, Friedrich K, Maida A et al (2016) Control of diabetic hyperglycaemia and insulin resistance through TSC22D4. Nat Commun 7:13267

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhou Y, Rui L (2013) Lipocalin 13 regulation of glucose and lipid metabolism in obesity. Vitam Horm 91:369–383

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wu HT, Ou HY, Hung HC et al (2016) A novel hepatokine, HFREP1, plays a crucial role in the development of insulin resistance and type 2 diabetes. Diabetologia 59:1732–1742

    Article  CAS  PubMed  Google Scholar 

  72. Gao M, Zhan YQ, Yu M et al (2014) Hepassocin activates the EGFR/ERK cascade and induces proliferation of L02 cells through the Src-dependent pathway. Cell Signal 26:2161–2166

    Article  CAS  PubMed  Google Scholar 

  73. Demchev V, Malana G, Vangala D et al (2013) Targeted deletion of fibrinogen like protein 1 reveals a novel role in energy substrate utilization. PLoS One 8:e58084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ketenci Gencer F, Yuksel S, Goksever Celik H (2021) Do serum hepassocin levels change in women with polycystic ovary syndrome? Eur J Obstet Gynecol Reprod Biol 267:137–141

    Article  CAS  PubMed  Google Scholar 

  75. Huang RL, Li CH, Du YF et al (2020) Discovery of a role of the novel hepatokine, hepassocin, in obesity. Biofactors 46:100–105

    Article  CAS  PubMed  Google Scholar 

  76. Misu H, Takamura T, Takayama H et al (2010) A liver-derived secretory protein, se lenoprotein P, causes insulin resistance. Cell Metab 12:483–495

    Article  CAS  PubMed  Google Scholar 

  77. Misu H, Ishikura K, Kurita S et al (2012) Inverse correlation between serum levels of selenoprotein P and adiponectin in patients with type 2 diabetes. PLoS One 7:e34952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hariharan S, Dharmaraj S (2020) Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 28:667–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Misu H (2019) Identification of hepatokines involved in pathology of type 2 diabetes and obesity. Endocr J 66:659–662

    Article  CAS  PubMed  Google Scholar 

  80. Yang SJ, Hwang SY, Choi HY et al (2011) Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: implications for insulin resistance, inflammation, and atherosclerosis. J Clin Endocrinol Metab 96:E1325–E1329

    Article  CAS  PubMed  Google Scholar 

  81. Amirkhizi F, Khalese-Ranjbar B, Mansouri E et al (2023) Correlations of selenium and selenoprotein P with asymmetric dimethylarginine and lipid profile in patients with polycystic ovary syndrome. J Trace Elem Med Biol 75:127101

    Article  CAS  PubMed  Google Scholar 

  82. Yildirim B, Celik O, Aydin S (2014) Adropin: a key component and potential gatekeeper of metabolic disturbances in policystic ovarian syndrome. Clin Exp Obstet Gynecol 41:310–312

    Article  CAS  PubMed  Google Scholar 

  83. Rosenberg ME, Silkensen J (1995) Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 27:633–645

    Article  CAS  PubMed  Google Scholar 

  84. Seo Ji A, Kang M-C, Ciaraldi TP et al (2018) Circulating ApoJ is closely associated with insulin resistance in human subjects. Metabolism 78:155–166

    Article  CAS  PubMed  Google Scholar 

  85. Liu S, Hu W, He Y et al (2020) Serum Fetuin-A levels are increased and associated with insulin resistance in women with polycystic ovary syndrome. BMC Endocr Disord 20:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gulhan I, Bozkaya G, Oztekin D et al (2012) Serum fetuin-A levels in women with polycystic ovary syndrome. Arch Gynecol Obstet 286:1473–1476

    Article  CAS  PubMed  Google Scholar 

  87. Kulik-Kupka K, Jabczyk M, Nowak J et al (2022) Fetuin-A and its association with anthropometric, atherogenic, and biochemical parameters and indices among women with polycystic ovary syndrome. Nutrients 14:4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sak S, Uyanikoglu H, Incebiyik A et al (2018) Associations of serum fetuin-A and oxidative stress parameters with polycystic ovary syndrome. Clin Exp Reprod Med 45:116–121

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gurbuz T, Alanya Tosun S et al (2021) Investigating fetuin-A and paraoxonase-1 activity as markers in polycystic ovary syndrome based on body mass index: a prospective case-control study. Cureus 13:e18553

    PubMed  PubMed Central  Google Scholar 

  90. Bayramoglu E, Cetinkaya S, Ozalkak S et al (2021) Evaluation of the pathophysiological role of Fetuin A levels in adolescents with polycystic ovary syndrome. J Pediatr Endocrinol Metab 34:911–916

    Article  CAS  PubMed  Google Scholar 

  91. Kozakowski J, Jeske W, Zgliczynski W (2014) Fetuin-A levels in lean and obese women with polycystic ovary syndrome. Endokrynol Pol 65:371–376

    Article  PubMed  Google Scholar 

  92. Mokou M, Yang S, Zhan B et al (2020) Elevated circulating fetuin-B levels are associated with insulin resistance and reduced by GLP-1RA in newly diagnosed PCOS women. Mediators Inflamm 2020:2483435

    Article  PubMed  PubMed Central  Google Scholar 

  93. Adamska A, Polak AM, Krentowska A et al (2019) Increased serum fetuin-B concentration is associated with HOMA-beta and indices of liver steatosis in women with polycystic ovary syndrome: a pilot study. Endocr Connect 8:1159–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ter Horst KW, Gilijamse PW, Versteeg RI et al (2017) Hepatic diacylglycerol-associated protein kinase cepsilon translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep 19:1997–2004

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ramanjaneya M, Bensila M, Bettahi I et al (2020) Dynamic changes in circulating endocrine FGF19 subfamily and fetuin-A in response to intralipid and insulin infusions in healthy and PCOS women. Front Endocrinol 11:568500

    Article  Google Scholar 

  96. Siemienowicza KJ, Furmanskab K, Filis P et al (2021) Pubertal FGF21 deficit is central in the metabolic pathophysiology of an ovine model of polycystic ovary syndrome. Mol Cell Endocrinol 525:111196

    Article  Google Scholar 

  97. Olszanecka-Glinianowicz M, Madej P, Wdowczyk M et al (2015) Circulating FGF21 levels are related to nutritional status and metabolic but not hormonal disturbances in polycystic ovary syndrome. Eur J Endocrinol 172:173–179

    Article  CAS  PubMed  Google Scholar 

  98. Kahraman S, Altinova AE, Yalcin MM et al (2018) Association of serum betatrophin with fbroblast growth factor-21 in women with polycystic ovary syndrome. J Endocrinol Invest 41:1069–1074

    Article  CAS  PubMed  Google Scholar 

  99. Temur M, Taşgöz FN, Kender Ertürk N (2022) Elevated circulating Selenoprotein P levels in patients with polycystic ovary syndrome. J Obstet Gynaecol 42:289–293

    Article  CAS  PubMed  Google Scholar 

  100. Ye Z, Zhang C, Zhao Y (2021) Potential effects of adropin on systemic metabolic and hormonal abnormalities in polycystic ovary syndrome. Reprod Biomed Online 42:1007–1014

    Article  CAS  PubMed  Google Scholar 

  101. Varikasuvu SR, Reddy EP, Thangappazham B et al (2021) Adropin levels and its associations as a fat-burning hormone in patients with polycystic ovary syndrome: a correlational meta-analysis. Gynecol Endocrinol 37:879–884

    Article  CAS  PubMed  Google Scholar 

  102. Ke Y, Hu J, Zhu Y et al (2022) Correlation between circulating adropin levels and patients with PCOS: an updated systematic review and meta-analysis. Reprod Sci 29:3295–3310

    Article  CAS  PubMed  Google Scholar 

  103. Kume T, Calan M, Yilmaz O et al (2016) A possible connection between tumor necrosis factor alpha and adropin levels in polycystic ovary syndrome. J Endocrinol Invest 39:747–754

    Article  CAS  PubMed  Google Scholar 

  104. Insi Coskun E, Omma T, Taskaldiran I, Firat SN, Culha C (2023) Metabolic role of hepassocin in polycystic ovary syndrome. Eur Rev Med Pharmacol Sci 27:5175–5183

    Google Scholar 

  105. Butler AE, Md Moin A-S, Reiner Z et al (2023) HDL-associated proteins in subjects with polycystic ovary syndrome: a proteomic study. Cells 12:855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios S Karagiannakis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanaki, K., Ilias, I., Paschou, S.A. et al. Hepatokines: the missing link in the development of insulin resistance and hyperandrogenism in PCOS?. Hormones 22, 715–724 (2023). https://doi.org/10.1007/s42000-023-00487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00487-x

Keywords

Navigation