Skip to main content
Log in

The adrenal and polycystic ovary syndrome

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders characterized by androgen excess, oligo-ovulation and polycystic ovaries. Although ovaries are the main source of increased androgens in the syndrome, between 20 and 30% of patients with PCOS have adrenal androgen (AA) excess, detectable primarily by elevated dehydroepiandrosterone sulfate (DHEAS) levels. Patients with PCOS demonstrate a generalized hypersecretion of adrenocortical products, basally and in response to ACTH stimulation. The mechanisms of these abnormalities are unclear although AA excess in PCOS is likely a complex trait, modulated by both intrinsic and acquired factors. To date, no specific genetic defects have been identified. The production of AAs in response to ACTH appears to be closely related to altered factors regulating glucose-mediated glucose disposal, increased peripheral metabolism of cortisol, and to a less extent to the effects of extra-adrenal androgens, insulin resistance, hyperinsulinemia or obesity. Finally, DHEAS levels and the response of AAs to ACTH are relatively constant over time and are closely correlated between PCOS patients and their siblings suggesting that this abnormality is an inherited trait in PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004;89:2745–9.

    PubMed  CAS  Google Scholar 

  2. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med 2005;352:1223–36.

    PubMed  CAS  Google Scholar 

  3. Azziz R, Marin C, Hoq L, Badamgarav E, Song P. Healthcare-related economic burden of the polycystic ovary syndrome (PCOS) during the reproductive lifespan. J Clin Endocrinol Metab 2005;90:4650–8.

    PubMed  CAS  Google Scholar 

  4. Zawadzki JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome. In: Dunaif A, Givens J, Haseltine F, Merriam GR, editors. Polycystic ovary syndrome. Boston: Blackwell Scientific Publications; 1992. pp. 377–84.

    Google Scholar 

  5. The Rotterdam ESHRE/ASRM Sponsored PCOS Consensus Workshop Group: Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004;81:19–25.

    Google Scholar 

  6. The Rotterdam ESHRE/ASRM Sponsored PCOS Consensus Workshop Group: revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (pcos). Hum Reprod 2004;19:41–7.

    Google Scholar 

  7. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 2006;91:4237–45.

    PubMed  CAS  Google Scholar 

  8. Gallagher TF, Kappas A, Hellman L, Lipsett MB, Pearson OH, West CD. Adrenocortical hyperfunction in idiopathic hirsutism and the stein-leventhal syndrome. J Clin Invest 1958;37:794–9.

    PubMed  CAS  Google Scholar 

  9. Wild RA, Umstot ES, Andersen RN, Ranney GB, Givens JR. Androgen parameters and their correlation with body weight in one hundred thirty-eight women thought to have hyperandrogenism. Am J Obstet Gynecol 1983;146:602–6.

    PubMed  CAS  Google Scholar 

  10. Hoffman DI, Klove K, Lobo RA. The prevalence and significance of elevated dehydroepiandrosterone sulfate levels in anovulatory women. Fertil Steril 1984;42:76–81.

    PubMed  CAS  Google Scholar 

  11. Steinberger E, Smith KD, Rodriguez-Rigau LJ. Testosterone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate in hyperandrogenic women. J Clin Endocrinol Metab 1984;59:471–7.

    PubMed  CAS  Google Scholar 

  12. Carmina E, Rosato F, Janni A. Increased DHEAS levels in PCO syndrome: evidence for the existence of two subgroups of patients. J Endocrinol Invest 1986;9:5–9.

    PubMed  CAS  Google Scholar 

  13. Price FV, Legro RS, Watt-Morse M, Kaplan SS. Chediak–Higashi syndrome in pregnancy. Obstet Gynecol 1992;79:804–6.

    PubMed  CAS  Google Scholar 

  14. Levin JH, Carmina E, Lobo RA. Is the inappropriate gonadotropin secretion of patients with polycystic ovary syndrome similar to that of patients with adult-onset congenital adrenal hyperplasia? Fertil Steril 1991;56:635–40.

    PubMed  CAS  Google Scholar 

  15. Carmina E, Lobo RA. Ovarian suppression reduces clinical and endocrine expression of late-onset congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Fertil Steril 1994;62:738–43.

    PubMed  CAS  Google Scholar 

  16. Dewailly D, Vantyghem-Haudiquet MC, Sainsard C, Buvat J, Cappoen JP, Ardaens K, Racadot A, Lefebvre J, Fossati P. Clinical and biological phenotypes in late-onset 21-hydroxylase deficiency. J Clin Endocrinol Metab 1986;63:418–23.

    PubMed  CAS  Google Scholar 

  17. Moran C, Azziz R, Carmina E, Dewailly D, Fruzzetti F, Ibanez L, Knochenhauer ES, Marcondes JA, Mendonca BB, Pignatelli D, Pugeat M, Rohmer V, Speiser PW, Witchel SF. 21-hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study. Am J Obstet Gynecol 2000;183:1468–74.

    PubMed  CAS  Google Scholar 

  18. Lobo RA, Goebelsmann U, Horton R. Evidence for the importance of peripheral tissue events in the development of hirsutism in polycystic ovary syndrome. J Clin Endocrinol Metab 1983;57:393–7.

    PubMed  CAS  Google Scholar 

  19. Ibanez L, Potau N, Virdis R, Zampolli M, Terzi C, Gussinye M, Carrascosa A, Vicens-Calvet E. Postpubertal outcome in girls diagnosed of premature pubarche during childhood: increased frequency of functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1993;76:1599–603.

    PubMed  CAS  Google Scholar 

  20. Miller D, Emans SJ, Kohane I. Follow-up study of adolescent girls with a history of premature pubarche. J Adolesc Health 1996;18:301–5.

    PubMed  CAS  Google Scholar 

  21. Ibanez L, Potau N, Zampolli M, Street ME, Carrascosa A. Girls diagnosed with premature pubarche show an exaggerated ovarian androgen synthesis from the early stages of puberty: Evidence from gonadotropin-releasing hormone agonist testing. Fertil Steril 1997;67:849–55.

    PubMed  CAS  Google Scholar 

  22. Meas T, Chevenne D, Thibaud E, Leger J, Cabrol S, Czernichow P, Levy-Marchal C. Endocrine consequences of premature pubarche in post-pubertal Caucasian girls. Clin Endocrinol (Oxf) 2002;57:101–6.

    Google Scholar 

  23. Witchel SF, Lee PA, Suda-Hartman M, Hoffman EP. Hyperandrogenism and manifesting heterozygotes for 21-hydroxylase deficiency. Biochem Mol Med 1997;62:151–8.

    PubMed  CAS  Google Scholar 

  24. Witchel SF, Aston CE. The role of heterozygosity for CYP21 in the polycystic ovary syndrome. J Pediatr Endocrinol Metab 2000;13 Suppl 5:1315–17.

    PubMed  Google Scholar 

  25. Ostlere LS, Rumsby G, Holownia P, Jacobs HS, Rustin MH, Honour JW. Carrier status for steroid 21-hydroxylase deficiency is only one factor in the variable phenotype of acne. Clin Endocrinol (Oxf) 1998;48:209–15.

    CAS  Google Scholar 

  26. Admoni O, Israel S, Lavi I, Gur M, Tenenbaum-Rakover Y. Hyperandrogenism in carriers of CYP21 mutations: the role of genotype. Clin Endocrinol (Oxf) 2006;64:645–51.

    CAS  Google Scholar 

  27. Witchel SF, Kahsar-Miller M, Aston CE, White C, Azziz R. Prevalence of CYP21 mutations and IRS1 variant among women with polycystic ovary syndrome and adrenal androgen excess. Fertil Steril 2005;83:371–5.

    PubMed  CAS  Google Scholar 

  28. Moran C, Knochenhauer E, Boots LR, Azziz R. Adrenal androgen excess in hyperandrogenism: Relation to age and body mass. Fertil Steril 1999;71:671–4.

    PubMed  CAS  Google Scholar 

  29. Guo Q, Kumar TR, Woodruff T, Hadsell LA, DeMayo FJ, Matzuk MM. Overexpression of mouse follistatin causes reproductive defects in transgenic mice. Mol Endocrinol 1998;12:96–106.

    PubMed  CAS  Google Scholar 

  30. Azziz R, Koulianos G. Adrenal androgens and reproductive aging in females. Semin Reprod Endocrinol 1991;9:249–60.

    Google Scholar 

  31. Carmina E, Koyama T, Chang L, Stanczyk FZ, Lobo RA. Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome? Am J Obstet Gynecol 1992;167:1807–12.

    PubMed  CAS  Google Scholar 

  32. Kumar A, Woods KS, Bartolucci AA, Azziz R. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (pcos). Clin Endocrinol (Oxf) 2005;62:644–9.

    CAS  Google Scholar 

  33. Azziz R, Dewailly D, Owerbach D. Clinical review 56: nonclassic adrenal hyperplasia: current concepts. J Clin Endocrinol Metab 1994;78:810–15.

    PubMed  CAS  Google Scholar 

  34. Derksen J, Nagesser SK, Meinders AE, Haak HR, van de Velde CJ. Identification of virilizing adrenal tumors in hirsute women. N Engl J Med 1994;331:968–73.

    PubMed  CAS  Google Scholar 

  35. Korth-Schutz S, Levine LS, New MI. Dehydroepiandrosterone sulfate (DS) levels, a rapid test for abnormal adrenal androgen secretion. J Clin Endocrinol Metab 1976;42:1005–1013.

    PubMed  CAS  Google Scholar 

  36. Lobo RA, Paul WL, Goebelsmann U. Dehydroepiandrosterone sulfate as an indicator of adrenal androgen function. Obstet Gynecol 1981;57:69–73.

    PubMed  CAS  Google Scholar 

  37. Yildiz B, Carmina E, Azziz R. Hypothalamic-pituitary-adrenal dysfunction in the polycystic ovary syndrome. In: Azziz R, Nestler J, Dewailly D, editors. Androgen excess disorders in women: Polycystic ovary syndrome and other disorders. Totowa, New Jersey: Humana Press; 2006. pp. 213–22.

    Google Scholar 

  38. Azziz R, Gay FL, Potter SR, Bradley E, Jr., Boots LR. The effects of prolonged hypertestosteronemia on adrenocortical biosynthesis in oophorectomized women. J Clin Endocrinol Metab 1991;72:1025–30.

    PubMed  CAS  Google Scholar 

  39. Azziz R, Rittmaster RS, Fox LM, Bradley EL, Jr., Potter HD, Boots LR. Role of the ovary in the adrenal androgen excess of hyperandrogenic women. Fertil Steril 1998;69:851–9.

    PubMed  CAS  Google Scholar 

  40. Hines GA, Azziz R. Impact of architectural disruption on adrenocortical steroidogenesis in vitro. J Clin Endocrinol Metab 1999;84:1017–21.

    PubMed  CAS  Google Scholar 

  41. Hines GA, Smith ER, Azziz R. Influence of insulin and testosterone on adrenocortical steroidogenesis in vitro: preliminary studies. Fertil Steril 2001;76:730–5.

    PubMed  CAS  Google Scholar 

  42. Huerta R, Dewailly D, Decanter C, Knochenhauer ES, Boots LR, Azziz R. 11beta-hydroxyandrostenedione and delta5-androstenediol as markers of adrenal androgen production in patients with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil Steril 1999;72:996–1000.

    PubMed  CAS  Google Scholar 

  43. Moran C, Reyna R, Boots LS, Azziz R. Adrenocortical hyperresponsiveness to corticotropin in polycystic ovary syndrome patients with adrenal androgen excess. Fertil Steril 2004;81:126–31.

    PubMed  CAS  Google Scholar 

  44. Azziz R, Ehrmann DA, Legro RS, Fereshetian AG, O’Keefe M, Ghazzi MN. Troglitazone decreases adrenal androgen levels in women with polycystic ovary syndrome. Fertil Steril 2003;79:932–7.

    PubMed  Google Scholar 

  45. Carmina E, Levin JH, Malizia G, Lobo RA. Ovine corticotropin-releasing factor and dexamethasone responses in hyperandrogenic women. Fertil Steril 1990;54:245–50.

    PubMed  CAS  Google Scholar 

  46. Horrocks PM, Kandeel FR, London DR, Butt WR, Lynch SS, Holder G, Logan-Edwards R. Acth function in women with the polycystic ovarian syndrome. Clin Endocrinol (Oxf) 1983;19:143–50.

    CAS  Google Scholar 

  47. Carmina E, Lobo RA. Pituitary-adrenal responses to ovine corticotropin-releasing factor in polycystic ovary syndrome and in other hyperandrogenic patients. Gynecol Endocrinol 1990;4:225–32.

    PubMed  CAS  Google Scholar 

  48. Azziz R, Black V, Hines GA, Fox LM, Boots LR. Adrenal androgen excess in the polycystic ovary syndrome: sensitivity and responsivity of the hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab 1998;83:2317–23.

    PubMed  CAS  Google Scholar 

  49. Azziz R, Wells G, Zacur HA, Acton RT. Abnormalities of 21-hydroxylase gene ratio and adrenal steroidogenesis in hyperandrogenic women with an exaggerated 17-hydroxyprogesterone response to acute adrenal stimulation. J Clin Endocrinol Metab 1991;73:1327–31.

    PubMed  CAS  Google Scholar 

  50. Azziz R, Owerbach D. Molecular abnormalities of the 21-hydroxylase gene in hyperandrogenic women with an exaggerated 17-hydroxyprogesterone response to short-term adrenal stimulation. Am J Obstet Gynecol 1995;172:914–8.

    PubMed  CAS  Google Scholar 

  51. Joehrer K, Geley S, Strasser-Wozak EM, Azziz R, Wollmann HA, Schmitt K, Kofler R, White PC. CYP11B1 mutations causing non-classic adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Hum Mol Genet 1997;6:1829–34.

    PubMed  CAS  Google Scholar 

  52. Lutfallah C, Wang W, Mason JI, Chang YT, Haider A, Rich B, Castro-Magana M, Copeland KC, David R, Pang S. Newly proposed hormonal criteria via genotypic proof for type 2 3beta-hydroxysteroid dehydrogenase deficiency. J Clin Endocrinol Metab 2002;87:2611–22.

    PubMed  CAS  Google Scholar 

  53. Carbunaru G, Prasad P, Scoccia B, Shea P, Hopwood N, Ziai F, Chang YT, Myers SE, Mason JI, Pang S. The hormonal phenotype of nonclassic 3 beta-hydroxysteroid dehydrogenase (HSD3B) deficiency in hyperandrogenic females is associated with insulin-resistant polycystic ovary syndrome and is not a variant of inherited HSD3B2 deficiency. J Clin Endocrinol Metab 2004;89:783–94.

    PubMed  CAS  Google Scholar 

  54. Kahsar-Miller M, Boots LR, Bartolucci A, Azziz R. Role of a CYP17 polymorphism in the regulation of circulating dehydroepiandrosterone sulfate levels in women with polycystic ovary syndrome. Fertil Steril 2004;82:973–5.

    PubMed  CAS  Google Scholar 

  55. Prelevic GM, Wurzburger MI, Balint-Peric L. 24-hour serum cortisol profiles in women with polycystic ovary syndrome. Gynecol Endocrinol 1993;7:179–84.

    Article  PubMed  CAS  Google Scholar 

  56. Vogeser M, Halser B, Baron A, Jacob K, Demant T. Corticosteroid-binding globulin and unbound serum cortisol in women with polycystic ovary syndrome. Clin Biochem 2000;33:157–9.

    PubMed  CAS  Google Scholar 

  57. Stewart PM, Penn R, Holder R, Parton A, Ratcliffe JG, London DR. The hypothalamo-pituitary-adrenal axis across the normal menstrual cycle and in polycystic ovary syndrome. Clin Endocrinol (Oxf) 1993;38:387–91.

    CAS  Google Scholar 

  58. Invitti C, Pecori Giraldi F, Dubini A, De Martin M, Cavagnini F. Increased urinary free cortisol and decreased serum corticosteroid-binding globulin in polycystic ovary syndrome. Acta Endocrinol (Copenh) 1991;125:28–32.

    CAS  Google Scholar 

  59. Walker BR, Rodin A, Taylor NF, Clayton RN. Endogenous inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 do not explain abnormal cortisol metabolism in polycystic ovary syndrome. Clin Endocrinol (Oxf) 2000;52:77–80.

    CAS  Google Scholar 

  60. Stewart PM, Shackleton CH, Beastall GH, Edwards CR. 5 alpha-reductase activity in polycystic ovary syndrome. Lancet 1990;335:431–3.

    PubMed  CAS  Google Scholar 

  61. Tsilchorozidou T, Honour JW, Conway GS. Altered cortisol metabolism in polycystic ovary syndrome: insulin enhances 5alpha-reduction but not the elevated adrenal steroid production rates. J Clin Endocrinol Metab 2003;88:5907–13.

    PubMed  CAS  Google Scholar 

  62. Fassnacht M, Schlenz N, Schneider SB, Wudy SA, Allolio B, Arlt W. Beyond adrenal and ovarian androgen generation: increased peripheral 5 alpha-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88:2760–66.

    PubMed  CAS  Google Scholar 

  63. Chin D, Shackleton C, Prasad VK, Kohn B, David R, Imperato-McGinley J, Cohen H, McMahon DJ, Oberfield SE. Increased 5alpha-reductase and normal 11beta-hydroxysteroid dehydrogenase metabolism of C19 and C21 steroids in a young population with polycystic ovarian syndrome. J Pediatr Endocrinol Metab 2000;13:253–9.

    PubMed  CAS  Google Scholar 

  64. Rodin A, Thakkar H, Taylor N, Clayton R. Hyperandrogenism in polycystic ovary syndrome. Evidence of dysregulation of 11 beta-hydroxysteroid dehydrogenase. N Engl J Med 1994;330:460–5.

    PubMed  CAS  Google Scholar 

  65. Gonzalez F, Hatala DA, Speroff L. Adrenal and ovarian steroid hormone responses to gonadotropin-releasing hormone agonist treatment in polycystic ovary syndrome. Am J Obstet Gynecol 1991;165:535–45.

    PubMed  CAS  Google Scholar 

  66. Rittmaster RS, Thompson DL. Effect of leuprolide and dexamethasone on hair growth and hormone levels in hirsute women: the relative importance of the ovary and the adrenal in the pathogenesis of hirsutism. J Clin Endocrinol Metab 1990;70:1096–102.

    PubMed  CAS  Google Scholar 

  67. Cedars MI, Steingold KA, de Ziegler D, Lapolt PS, Chang RJ, Judd HL. Long-term administration of gonadotropin-releasing hormone agonist and dexamethasone: assessment of the adrenal role in ovarian dysfunction. Fertil Steril 1992;57:495–500.

    PubMed  CAS  Google Scholar 

  68. Slayden SM, Crabbe L, Bae S, Potter HD, Azziz R, Parker CR, Jr. The effect of 17 beta-estradiol on adrenocortical sensitivity, responsiveness, and steroidogenesis in postmenopausal women. J Clin Endocrinol Metab 1998;83:519–24.

    PubMed  CAS  Google Scholar 

  69. Marin CM, Bartolucci A, Azziz R. Prevalence of insulin resistance in polycystic ovary syndrome (PCOS) patients using the homeostatic measurement assessment (HOMA-IR). Fertil Steril 2003;80:274–5.

    Google Scholar 

  70. Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 1999;84:165–9.

    PubMed  CAS  Google Scholar 

  71. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800.

    PubMed  CAS  Google Scholar 

  72. Barbieri RL, Makris A, Randall RW, Daniels G, Kistner RW, Ryan KJ. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab 1986;62:904–10.

    PubMed  CAS  Google Scholar 

  73. Nestler JE, Clore JN, Strauss JF, 3rd, Blackard WG. The effects of hyperinsulinemia on serum testosterone, progesterone, dehydroepiandrosterone sulfate, and cortisol levels in normal women and in a woman with hyperandrogenism, insulin resistance, and acanthosis nigricans. J Clin Endocrinol Metab 1987;64:180–4.

    PubMed  CAS  Google Scholar 

  74. Kumar A, Bartolucci AA, Azziz R. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS) using age-specific dheas levels adjusted for body mass and ethnicity. Fertil Steril 2003;80:46.

    Google Scholar 

  75. Kauffman RP, Baker VM, DiMarino P, Castracane VD. Hyperinsulinemia and circulating dehydroepiandrosterone sulfate in white and Mexican American women with polycystic ovary syndrome. Fertil Steril 2006;85:1010–16.

    PubMed  CAS  Google Scholar 

  76. Falcone T, Finegood DT, Fantus IG, Morris D. Androgen response to endogenous insulin secretion during the frequently sampled intravenous glucose tolerance test in normal and hyperandrogenic women. J Clin Endocrinol Metab 1990;71:1653–7.

    Article  PubMed  CAS  Google Scholar 

  77. Farah-Eways L, Reyna R, Knochenhauer ES, Bartolucci AA, Azziz R. Glucose action and adrenocortical biosynthesis in women with polycystic ovary syndrome. Fertil Steril 2004;81:120–5.

    PubMed  CAS  Google Scholar 

  78. Guido M, Romualdi D, Suriano R, Giuliani M, Costantini B, Apa R, Lanzone A. Effect of pioglitazone treatment on the adrenal androgen response to corticotrophin in obese patients with polycystic ovary syndrome. Hum Reprod 2004;19:534–9.

    PubMed  CAS  Google Scholar 

  79. Arlt W, Auchus RJ, Miller WL. Thiazolidinediones but not metformin directly inhibit the steroidogenic enzymes p450c17 and 3beta-hydroxysteroid dehydrogenase. J Biol Chem 2001;276:16767–71.

    PubMed  CAS  Google Scholar 

  80. la Marca A, Morgante G, Paglia T, Ciotta L, Cianci A, De Leo V. Effects of metformin on adrenal steroidogenesis in women with polycystic ovary syndrome. Fertil Steril 1999;72:985–9.

    PubMed  Google Scholar 

  81. Arslanian SA, Lewy V, Danadian K, Saad R. Metformin therapy in obese adolescents with polycystic ovary syndrome and impaired glucose tolerance: amelioration of exaggerated adrenal response to adrenocorticotropin with reduction of insulinemia/insulin resistance. J Clin Endocrinol Metab 2002;87:1555–9.

    PubMed  CAS  Google Scholar 

  82. Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998;19:101–43.

    PubMed  CAS  Google Scholar 

  83. Forney JP, Milewich L, Chen GT, Garlock JL, Schwarz BE, Edman CD, MacDonald PC. Aromatization of androstenedione to estrone by human adipose tissue in vitro. Correlation with adipose tissue mass, age, and endometrial neoplasia. J Clin Endocrinol Metab 1981;53:192–9.

    Google Scholar 

  84. Ackerman GE, Smith ME, Mendelson CR, MacDonald PC, Simpson ER. Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture. J Clin Endocrinol Metab 1981;53:412–17.

    PubMed  CAS  Google Scholar 

  85. Bulun SE, Simpson ER. Competitive reverse transcription-polymerase chain reaction analysis indicates that levels of aromatase cytochrome p450 transcripts in adipose tissue of buttocks, thighs, and abdomen of women increase with advancing age. J Clin Endocrinol Metab 1994;78:428–32.

    PubMed  CAS  Google Scholar 

  86. Azziz R, Zacur HA, Parker CR, Jr., Bradley EL, Jr., Boots LR. Effect of obesity on the response to acute adrenocorticotropin stimulation in eumenorrheic women. Fertil Steril 1991;56:427–33.

    PubMed  CAS  Google Scholar 

  87. Brody S, Carlstrom K, Lagrelius A, Lunell NO, Mollerstrom G. Adrenal steroids in post-menopausal women: relation to obesity and to bone mineral content. Maturitas 1987;9:25–32.

    PubMed  CAS  Google Scholar 

  88. Komindr S, Kurtz BR, Stevens MD, Karas JG, Bittle JB, Givens JR. Relative sensitivity and responsivity of serum cortisol and two adrenal androgens to alpha-adrenocorticotropin-(1-24) in normal and obese, nonhirsute, eumenorrheic women. J Clin Endocrinol Metab 1986;63:860–4.

    PubMed  CAS  Google Scholar 

  89. Vicennati V, Calzoni F, Gambineri A, Gagliardi L, Morselli Labate AM, Casimirri F, Pasquali R. Secretion of major adrenal androgens following acth administration in obese women with different body fat distribution. Horm Metab Res 1998;30:133–6.

    Article  PubMed  CAS  Google Scholar 

  90. Rittmaster RS, Deshwal N, Lehman L. The role of adrenal hyperandrogenism, insulin resistance, and obesity in the pathogenesis of polycystic ovarian syndrome. J Clin Endocrinol Metab 1993;76:1295–300.

    PubMed  CAS  Google Scholar 

  91. Stewart PM, Boulton A, Kumar S, Clark PM, Shackleton CH. Cortisol metabolism in human obesity: impaired cortisone→cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab 1999;84:1022–7.

    PubMed  CAS  Google Scholar 

  92. Vicennati V, Pasquali R. Abnormalities of the hypothalamic-pituitary-adrenal axis in nondepressed women with abdominal obesity and relations with insulin resistance: evidence for a central and a peripheral alteration. J Clin Endocrinol Metab 2000;85:4093–8.

    PubMed  CAS  Google Scholar 

  93. Akamine Y, Kato K, Ibayashi H. Studies on changes in the concentration of serum adrenal androgens in pubertal twins. Acta Endocrinol (Copenh) 1980;93:356–64.

    CAS  Google Scholar 

  94. Rotter JI, Wong FL, Lifrak ET, Parker LN. A genetic component to the variation of dehydroepiandrosterone sulfate. Metabolism 1985;34:731–6.

    PubMed  CAS  Google Scholar 

  95. Meikle AW, Stringham JD, Woodward MG, Bishop DT. Heritability of variation of plasma cortisol levels. Metabolism 1988;37:514–7.

    PubMed  CAS  Google Scholar 

  96. Rice T, Sprecher DL, Borecki IB, Mitchell LE, Laskarzewski PM, Rao DC. The Cincinnati myocardial infarction and hormone family study: family resemblance for dehydroepiandrosterone sulfate in control and myocardial infarction families. Metabolism 1993;42:1284–90.

    PubMed  CAS  Google Scholar 

  97. Azziz R, Fox LM, Zacur HA, Parker CR, Jr., Boots LR. Adrenocortical secretion of dehydroepiandrosterone in healthy women: highly variable response to adrenocorticotropin. J Clin Endocrinol Metab 2001;86:2513–7.

    PubMed  CAS  Google Scholar 

  98. Thomas G, Frenoy N, Legrain S, Sebag-Lanoe R, Baulieu EE, Debuire B. Serum dehydroepiandrosterone sulfate levels as an individual marker. J Clin Endocrinol Metab 1994;79:1273–6.

    PubMed  CAS  Google Scholar 

  99. Nafziger AN, Bowlin SJ, Jenkins PL, Pearson TA. Longitudinal changes in dehydroepiandrosterone concentrations in men and women. J Lab Clin Med 1998;131:316–23.

    PubMed  CAS  Google Scholar 

  100. Yildiz BO, Woods KS, Stanczyk F, Bartolucci A, Azziz R. Stability of adrenocortical steroidogenesis over time in healthy women and women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:5558–62.

    PubMed  CAS  Google Scholar 

  101. Legro RS, Kunselman AR, Demers L, Wang SC, Bentley-Lewis R, Dunaif A. Elevated dehydroepiandrosterone sulfate levels as the reproductive phenotype in the brothers of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2002;87:2134–8.

    PubMed  CAS  Google Scholar 

  102. Yildiz BO, Goodarzi MO, Guo X, Rotter JI, Azziz R. Heritability of dehydroepiandrosterone sulfate in women with polycystic ovary syndrome and their sisters. Fertil Steril 2006;86:1688–93.

    PubMed  CAS  Google Scholar 

  103. Goodarzi MO, Guo X, Yildiz BO, Stanczyk FZ, Azziz R. Correlation of adrenocorticotropin steroid levels between women with polycystic ovary syndrome and their sisters. Am J Obstet Gynecol 2007;196:398 e391–5; discussion 398 e395–6.

    Google Scholar 

  104. Kahsar-Miller M, Azziz R, Feingold E, Witchel SF. A variant of the glucocorticoid receptor gene is not associated with adrenal androgen excess in women with polycystic ovary syndrome. Fertil Steril 2000;74:1237–40.

    PubMed  CAS  Google Scholar 

  105. Dolzan V, Prezelj J, Vidan-Jeras B, Breskvar K. Adrenal 21-hydroxylase gene mutations in Slovenian hyperandrogenic women: evaluation of corticotrophin stimulation and hla polymorphisms in screening for carrier status. Eur J Endocrinol 1999;141:132–9.

    PubMed  CAS  Google Scholar 

  106. Goodarzi MO, Antoine HJ, Azziz R. Genes for enzymes regulating dhea sulfonation are associated with levels of dhea-sulfate in polycystic ovary syndrome. J Clin Endocrinol Metab 2007;92:2659–64.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Azziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, B.O., Azziz, R. The adrenal and polycystic ovary syndrome. Rev Endocr Metab Disord 8, 331–342 (2007). https://doi.org/10.1007/s11154-007-9054-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-007-9054-0

Keywords

Navigation