Skip to main content

Advertisement

Log in

Early life stress and trauma: developmental neuroendocrine aspects of prolonged stress system dysregulation

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Experience of early life stress (ELS) and trauma is highly prevalent in the general population and has a high public health impact, as it can trigger a health-related risk cascade and lead to impaired homeostatic balance and elevated cacostatic load even decades later. The prolonged neuropsychobiological impact of ELS can, thus, be conceptualized as a common developmental risk factor for disease associated with increased physical and mental morbidity in later life. ELS during critical periods of brain development with elevated neuroplasticity could exert a programming effect on particular neuronal networks related to the stress response and lead to enduring neuroendocrine alterations, i.e., hyper- or hypoactivation of the stress system, associated with adult hypothalamic-pituitary-adrenal axis and glucocorticoid signaling dysregulation. This paper reviews the pathophysiology of the human stress response and provides evidence from human research on the most acknowledged stress axis-related neuroendocrine pathways exerting the enduring adverse effects of ELS and mediating the cumulative long-term risk of disease vulnerability in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shonkoff JP, Boyce WT, McEwen BS (2009) Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA 301(21):2252–2259

    CAS  PubMed  Google Scholar 

  2. Gluckman PD, Hanson MA, Pinal C (2005) The developmental origins of adult disease. Maternal & Child Nutrition 1(3):130–141

    Google Scholar 

  3. Gilbert R, Widom CS, Browne K, Fergusson D, Webb E, Janson S (2009) Burden and consequences of child maltreatment in high-income countries. Lancet 373(9657):68–81

    PubMed  Google Scholar 

  4. Green JG, McLaughlin KA, Berglund PA et al (2010) Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch Gen Psychiatry 67(2):113–123

    PubMed  PubMed Central  Google Scholar 

  5. Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381

    CAS  PubMed  Google Scholar 

  6. Maercker A, Michael T, Fehm L, Becker ES, Margraf J (2004) Age of traumatisation as a predictor of post-traumatic stress disorder or major depression in young women. Br J Psychiatry 184:482–487

    PubMed  Google Scholar 

  7. Scott KM, Von Korff M, Angermeyer MC et al (2011) Association of childhood adversities and early-onset mental disorders with adult-onset chronic physical conditions. Arch Gen Psychiatry 68(8):838–844

    PubMed  PubMed Central  Google Scholar 

  8. Nanni V, Uher R, Danese A (2012) Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: a meta-analysis. Am J Psychiatry 169(2):141–151

    PubMed  Google Scholar 

  9. Pirkola S, Isometsa E, Aro H et al (2005) Childhood adversities as risk factors for adult mental disorders: results from the Health 2000 study. Soc Psychiatry Psychiatr Epidemiol 40(10):769–777

    PubMed  Google Scholar 

  10. Koenen KC, Moffitt TE, Poulton R, Martin J, Caspi A (2007) Early childhood factors associated with the development of post-traumatic stress disorder: results from a longitudinal birth cohort. Psychol Med 37(2):181–192

    PubMed  Google Scholar 

  11. Khoury L, Tang YL, Bradley B, Cubells JF, Ressler KJ (2010) Substance use, childhood traumatic experience, and posttraumatic stress disorder in an urban civilian population. Depression and Anxiety 27(12):1077–1086

    PubMed  PubMed Central  Google Scholar 

  12. Strine TW, Dube SR, Edwards VJ et al (2012) Associations between adverse childhood experiences, psychological distress, and adult alcohol problems. Am J Health Behav 36(3):408–423

    PubMed  Google Scholar 

  13. Spratt EG, Back SE, Yeatts SD et al (2009) Relationship between child abuse and adult smoking. Int J Psychiatry Med 39(4):417–426

    PubMed  PubMed Central  Google Scholar 

  14. Zatti C, Rosa V, Barros A et al (2017) Childhood trauma and suicide attempt: a meta-analysis of longitudinal studies from the last decade. Psychiatry Res 256:353–358

    PubMed  Google Scholar 

  15. Goodwin RD, Stein MB (2004) Association between childhood trauma and physical disorders among adults in the United States. Psychol Med 34(3):509–520

    PubMed  Google Scholar 

  16. Korkeila J, Vahtera J, Korkeila K et al (2010) Childhood adversities as predictors of incident coronary heart disease and cerebrovascular disease. Heart 96(4):298–303

    PubMed  Google Scholar 

  17. Tamayo T, Christian H, Rathmann W (2010) Impact of early psychosocial factors (childhood socioeconomic factors and adversities) on future risk of type 2 diabetes, metabolic disturbances and obesity: a systematic review. BMC Public Health 10:525

    PubMed  PubMed Central  Google Scholar 

  18. Stein DJ, Scott K, Haro Abad JM et al (2010) Early childhood adversity and later hypertension: data from the World Mental Health Survey. Ann Clin Psychiatry 22(1):19–28

    PubMed  PubMed Central  Google Scholar 

  19. Dong M, Giles WH, Felitti VJ et al (2004) Insights into causal pathways for ischemic heart disease: Adverse Childhood Experiences Study. Circulation 110(13):1761–1766

    PubMed  Google Scholar 

  20. Paras ML, Murad MH, Chen LP et al (2009) Sexual abuse and lifetime diagnosis of somatic disorders: a systematic review and meta-analysis. JAMA 302(5):550–561

    CAS  PubMed  Google Scholar 

  21. Wegman HL, Stetler C (2009) A meta-analytic review of the effects of childhood abuse on medical outcomes in adulthood. Psychosom Med 71(8):805–812

    PubMed  Google Scholar 

  22. Reuben A, Moffitt TE, Caspi A et al (2016) Lest we forget: comparing retrospective and prospective assessments of adverse childhood experiences in the prediction of adult health. J Child Psychol Psychiatry 57(10):1103–1112

    PubMed  PubMed Central  Google Scholar 

  23. Edwards VJ, Holden GW, Felitti VJ, Anda RF (2003) Relationship between multiple forms of childhood maltreatment and adult mental health in community respondents: results from the Adverse Childhood Experiences Study. Am J Psychiatry 160(8):1453–1460

    PubMed  Google Scholar 

  24. Walker EA, Gelfand A, Katon WJ et al (1999) Adult health status of women with histories of childhood abuse and neglect. Am J Med 107(4):332–339

    CAS  PubMed  Google Scholar 

  25. Huang MC, Schwandt ML, Ramchandani VA, George DT, Heilig M (2012) Impact of multiple types of childhood trauma exposure on risk of psychiatric comorbidity among alcoholic inpatients. Alcohol Clin Exp Res 36(6):1099–1107

    CAS  PubMed  Google Scholar 

  26. Agorastos A, Pittman JO, Angkaw AC et al (2014) The cumulative effect of different childhood trauma types on self-reported symptoms of adult male depression and PTSD, substance abuse and health-related quality of life in a large active-duty military cohort. J Psychiatr Res 58:46–54

    PubMed  Google Scholar 

  27. Anda RF, Felitti VJ, Bremner JD et al (2006) The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. Eur Arch Psychiatry Clin Neurosci 256(3):174–186

    PubMed  Google Scholar 

  28. Briere J, Kaltman S, Green BL (2008) Accumulated childhood trauma and symptom complexity. J Trauma Stress 21(2):223–226

    PubMed  Google Scholar 

  29. Suliman S, Mkabile SG, Fincham DS, Ahmed R, Stein DJ, Seedat S (2009) Cumulative effect of multiple trauma on symptoms of posttraumatic stress disorder, anxiety, and depression in adolescents. Compr Psychiatry 50(2):121–127

    PubMed  Google Scholar 

  30. Anda RF, Brown DW, Felitti VJ, Bremner JD, Dube SR, Giles WH (2007) Adverse childhood experiences and prescribed psychotropic medications in adults. Am J Prev Med 32(5):389–394

    PubMed  PubMed Central  Google Scholar 

  31. Kaufman J, Plotsky PM, Nemeroff CB, Charney DS (2000) Effects of early adverse experiences on brain structure and function: clinical implications. Biol Psychiatry 48(8):778–790

    CAS  PubMed  Google Scholar 

  32. Heim C, Nemeroff CB (1999) The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry 46(11):1509–1522

    CAS  PubMed  Google Scholar 

  33. Felitti VJ, Anda RF, Nordenberg D et al (1998) Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: the Adverse Childhood Experiences (ACE) Study. Am J Prev Med 14(4):245–258

    CAS  PubMed  Google Scholar 

  34. Nemeroff CB (2016) Paradise lost: the neurobiological and clinical consequences of child abuse and neglect. Neuron 89(5):892–909

    CAS  PubMed  Google Scholar 

  35. Buchman TG (2002) The community of the self. Nature 420(6912):246–251

    CAS  PubMed  Google Scholar 

  36. Ikegami T, Suzuki K (2008) From a homeostatic to a homeodynamic self. Biosystems 91(2):388–400

    PubMed  Google Scholar 

  37. Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10(6):397–409

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Elenkov IJ, Chrousos GP (2006) Stress system—organization, physiology and immunoregulation. Neuroimmunomodulation 13(5–6):257–267

    CAS  PubMed  Google Scholar 

  39. Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E (2015) Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 22(1–2):6–19

    CAS  PubMed  Google Scholar 

  40. Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53(4):865–871

    PubMed  Google Scholar 

  41. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267(9):1244–1252

    CAS  PubMed  Google Scholar 

  42. Frodl T, O’Keane V (2013) How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiol Dis 52:24–37

    PubMed  Google Scholar 

  43. Seo D, Tsou KA, Ansell EB, Potenza MN, Sinha R (2014) Cumulative adversity sensitizes neural response to acute stress: association with health symptoms. Neuropsychopharmacology 39(3):670–680

    PubMed  Google Scholar 

  44. Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6):434–445

    CAS  PubMed  Google Scholar 

  45. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179

    CAS  PubMed  Google Scholar 

  46. Koolhaas JM, Bartolomucci A, Buwalda B et al (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35(5):1291–1301

    CAS  PubMed  Google Scholar 

  47. Joels M, Baram TZ (2009) The neuro-symphony of stress. Nat Rev Neurosci 10(6):459–466

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284

    CAS  PubMed  Google Scholar 

  49. Aguilera G, Liu Y (2012) The molecular physiology of CRH neurons. Front Neuroendocrinol 33(1):67–84

    CAS  PubMed  Google Scholar 

  50. Smith SM, Vale WW (2006) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8(4):383–395

    PubMed  PubMed Central  Google Scholar 

  51. Mullen PE, Martin JL, Anderson JC, Romans SE, Herbison GP (1996) The long-term impact of the physical, emotional, and sexual abuse of children: a community study. Child Abuse Negl 20(1):7–21

    CAS  PubMed  Google Scholar 

  52. Pole N, Neylan TC, Otte C et al (2007) Associations between childhood trauma and emotion-modulated psychophysiological responses to startling sounds: a study of police cadets. J Abnorm Psychol 116(2):352–361

    PubMed  Google Scholar 

  53. Mock SE, Arai SM (2010) Childhood trauma and chronic illness in adulthood: mental health and socioeconomic status as explanatory factors and buffers. Front Psychol 1:246

    PubMed  Google Scholar 

  54. Raison CL, Miller AH (2003) When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 160(9):1554–1565

    PubMed  Google Scholar 

  55. Rohleder N, Wolf JM, Wolf OT (2010) Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neurosci Biobehav Rev 35(1):104–114

    CAS  PubMed  Google Scholar 

  56. Pervanidou P (2008) Biology of post-traumatic stress disorder in childhood and adolescence. J Neuroendocrinol 20(5):632–638

    CAS  PubMed  Google Scholar 

  57. Nemeroff CB, Bremner JD, Foa EB, Mayberg HS, North CS, Stein MB (2006) Posttraumatic stress disorder: a state-of-the-science review. J Psychiatr Res 40(1):1–21

    PubMed  Google Scholar 

  58. Yehuda R (2000) Biology of posttraumatic stress disorder. J Clin Psychiatry 61(Suppl 7):14–21

    PubMed  Google Scholar 

  59. Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73(2):114–126

    PubMed  Google Scholar 

  60. Pervanidou P, Chrousos GP (2010) Neuroendocrinology of post-traumatic stress disorder. Prog Brain Res 182:149–160

    CAS  PubMed  Google Scholar 

  61. Ehlert U, Gaab J, Heinrichs M (2001) Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: the role of the hypothalamus-pituitary-adrenal axis. Biol Psychol 57(1–3):141–152

    CAS  PubMed  Google Scholar 

  62. Heim C, Ehlert U, Hellhammer DH (2000) The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 25(1):1–35

    CAS  PubMed  Google Scholar 

  63. Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49(12):1023–1039

    CAS  PubMed  Google Scholar 

  64. Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33(6):693–710

    CAS  PubMed  Google Scholar 

  65. de Kloet CS, Vermetten E, Bikker A et al (2007) Leukocyte glucocorticoid receptor expression and immunoregulation in veterans with and without post-traumatic stress disorder. Mol Psychiatry 12(5):443–453

    PubMed  Google Scholar 

  66. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    PubMed  Google Scholar 

  67. Yehuda R, Seckl J (2011) Minireview: Stress-related psychiatric disorders with low cortisol levels: a metabolic hypothesis. Endocrinology 152(12):4496–4503

    CAS  PubMed  Google Scholar 

  68. Nemeroff CB (2004) Neurobiological consequences of childhood trauma. J Clin Psychiatry 65(Suppl 1):18–28

    CAS  PubMed  Google Scholar 

  69. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP (2002) Developmental neurobiology of childhood stress and trauma. The Psychiatric Clinics of North America 25(2):397–426 vii-viii

    PubMed  Google Scholar 

  70. Heim C, Newport DJ, Miller AH, Nemeroff CB (2000) Long-term neuroendocrine effects of childhood maltreatment. JAMA 284(18):2321

    CAS  PubMed  Google Scholar 

  71. Heim C, Newport DJ, Heit S et al (2000) Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284(5):592–597

    CAS  PubMed  Google Scholar 

  72. Heim C, Mletzko T, Purselle D, Musselman DL, Nemeroff CB (2008) The dexamethasone/corticotropin-releasing factor test in men with major depression: role of childhood trauma. Biol Psychiatry 63(4):398–405

    CAS  PubMed  Google Scholar 

  73. Heim C, Newport DJ, Bonsall R, Miller AH, Nemeroff CB (2001) Altered pituitary-adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. Am J Psychiatry 158(4):575–581

    CAS  PubMed  Google Scholar 

  74. Lu S, Gao W, Huang M, Li L, Xu Y (2016) In search of the HPA axis activity in unipolar depression patients with childhood trauma: combined cortisol awakening response and dexamethasone suppression test. J Psychiatr Res 78:24–30

    PubMed  Google Scholar 

  75. Butler K, Klaus K, Edwards L, Pennington K (2017) Elevated cortisol awakening response associated with early life stress and impaired executive function in healthy adult males. Horm Behav 95:13–21

    CAS  PubMed  Google Scholar 

  76. Pesonen AK, Raikkonen K, Feldt K et al (2010) Childhood separation experience predicts HPA axis hormonal responses in late adulthood: a natural experiment of World War II. Psychoneuroendocrinology 35(5):758–767

    CAS  PubMed  Google Scholar 

  77. Muhtz C, Wester M, Yassouridis A, Wiedemann K, Kellner M (2008) A combined dexamethasone/corticotropin-releasing hormone test in patients with chronic PTSD—first preliminary results. J Psychiatr Res 42(8):689–693

    PubMed  Google Scholar 

  78. Tyrka AR, Wier L, Price LH et al (2008) Childhood parental loss and adult hypothalamic-pituitary-adrenal function. Biol Psychiatry 63(12):1147–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kumari M, Head J, Bartley M, Stansfeld S, Kivimaki M (2013) Maternal separation in childhood and diurnal cortisol patterns in mid-life: findings from the Whitehall II study. Psychol Med 43(3):633–643

    CAS  PubMed  Google Scholar 

  80. Kellner M, Muhtz C, Peter F, Dunker S, Wiedemann K, Yassouridis A (2010) Increased DHEA and DHEA-S plasma levels in patients with post-traumatic stress disorder and a history of childhood abuse. J Psychiatr Res 44(4):215–219

    PubMed  Google Scholar 

  81. Carpenter LL, Shattuck TT, Tyrka AR, Geracioti TD, Price LH (2011) Effect of childhood physical abuse on cortisol stress response. Psychopharmacology (Berl) 214(1):367–375

    CAS  Google Scholar 

  82. Voellmin A, Winzeler K, Hug E et al (2015) Blunted endocrine and cardiovascular reactivity in young healthy women reporting a history of childhood adversity. Psychoneuroendocrinology 51:58–67

    CAS  PubMed  Google Scholar 

  83. Carpenter LL, Tyrka AR, Ross NS, Khoury L, Anderson GM, Price LH (2009) Effect of childhood emotional abuse and age on cortisol responsivity in adulthood. Biol Psychiatry 66(1):69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hinkelmann K, Muhtz C, Dettenborn L et al (2013) Association between childhood trauma and low hair cortisol in depressed patients and healthy control subjects. Biol Psychiatry 74(9):e15–e17

    CAS  PubMed  Google Scholar 

  85. Suzuki A, Poon L, Papadopoulos AS, Kumari V, Cleare AJ (2014) Long term effects of childhood trauma on cortisol stress reactivity in adulthood and relationship to the occurrence of depression. Psychoneuroendocrinology 50:289–299

    CAS  PubMed  Google Scholar 

  86. Schalinski I, Elbert T, Steudte-Schmiedgen S, Kirschbaum C (2015) The cortisol paradox of trauma-related disorders: lower phasic responses but higher tonic levels of cortisol are associated with sexual abuse in childhood. PLoS One 10(8):e0136921

    PubMed  PubMed Central  Google Scholar 

  87. Kuhlman KR, Geiss EG, Vargas I, Lopez-Duran NL (2015) Differential associations between childhood trauma subtypes and adolescent HPA-axis functioning. Psychoneuroendocrinology 54:103–114

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kuhlman KR, Chiang JJ, Horn S, Bower JE (2017) Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neurosci Biobehav Rev 80:166–184

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Uematsu A, Matsui M, Tanaka C et al (2012) Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS One 7(10):e46970

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Giedd JN (2012) The digital revolution and adolescent brain evolution. J Adolesc Health 51(2):101–105

    PubMed  PubMed Central  Google Scholar 

  91. Qiu A, Mori S, Miller MI (2015) Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol 66:853–876

    PubMed  PubMed Central  Google Scholar 

  92. Daskalakis NP, Bagot RC, Parker KJ, Vinkers CH, de Kloet ER (2013) The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 38(9):1858–1873

    PubMed  PubMed Central  Google Scholar 

  93. Gunnar MR (1998) Quality of early care and buffering of neuroendocrine stress reactions: potential effects on the developing human brain. Prev Med 27(2):208–211

    CAS  PubMed  Google Scholar 

  94. Gunnar M, Quevedo K (2007) The neurobiology of stress and development. Annu Rev Psychol 58:145–173

    PubMed  Google Scholar 

  95. Gunnar MR, Wewerka S, Frenn K, Long JD, Griggs C (2009) Developmental changes in hypothalamus-pituitary-adrenal activity over the transition to adolescence: normative changes and associations with puberty. Dev Psychopathol 21(1):69–85

    PubMed  PubMed Central  Google Scholar 

  96. Davis EP, Granger DA (2009) Developmental differences in infant salivary alpha-amylase and cortisol responses to stress. Psychoneuroendocrinology 34(6):795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hostinar CE, Gunnar MR (2013) Future directions in the study of social relationships as regulators of the HPA axis across development. J Clin Child Adolesc Psychol 42(4):564–575

    PubMed  PubMed Central  Google Scholar 

  98. Hostinar CE, Sullivan RM, Gunnar MR (2014) Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development. Psychol Bull 140(1):256–282

    PubMed  Google Scholar 

  99. Hostinar CE, Johnson AE, Gunnar MR (2015) Early social deprivation and the social buffering of cortisol stress responses in late childhood: an experimental study. Dev Psychol 51(11):1597–1608

    PubMed  PubMed Central  Google Scholar 

  100. Struber N, Struber D, Roth G (2014) Impact of early adversity on glucocorticoid regulation and later mental disorders. Neurosci Biobehav Rev 38:17–37

    PubMed  Google Scholar 

  101. Cohen S, Janicki-Deverts D, Doyle WJ et al (2012) Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A 109(16):5995–5999

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kuhlman KR, Vargas I, Geiss EG, Lopez-Duran NL (2015) Age of trauma onset and HPA axis dysregulation among trauma-exposed youth. J Trauma Stress 28(6):572–579

    PubMed  PubMed Central  Google Scholar 

  103. McLaughlin KA, Sheridan MA, Tibu F, Fox NA, Zeanah CH, Nelson CA 3rd (2015) Causal effects of the early caregiving environment on development of stress response systems in children. Proc Natl Acad Sci U S A 112(18):5637–5642

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fuhrmann D, Knoll LJ, Blakemore SJ (2015) Adolescence as a sensitive period of brain development. Trends Cogn Sci 19(10):558–566

    PubMed  Google Scholar 

  105. Galvan A, McGlennen KM (2013) Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults. J Cogn Neurosci 25(2):284–296

    PubMed  Google Scholar 

  106. Somerville LH, Jones RM, Casey BJ (2010) A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn 72(1):124–133

    PubMed  Google Scholar 

  107. Stroud LR, Foster E, Papandonatos GD et al (2009) Stress response and the adolescent transition: performance versus peer rejection stressors. Dev Psychopathol 21(1):47–68

    PubMed  PubMed Central  Google Scholar 

  108. Tornhage CJ (2002) Reference values for morning salivary cortisol concentrations in healthy school-aged children. J Pediatr Endocrinol Metab 15(2):197–204

    CAS  PubMed  Google Scholar 

  109. Blumenthal H, Leen-Feldner EW, Badour CL, Trainor CD, Babson KA (2014) Pubertal maturation and cortisol level in response to a novel social environment among female adolescents. J Adolesc 37(6):893–900

    PubMed  Google Scholar 

  110. Sumter SR, Bokhorst CL, Miers AC, Van Pelt J, Westenberg PM (2010) Age and puberty differences in stress responses during a public speaking task: do adolescents grow more sensitive to social evaluation? Psychoneuroendocrinology 35(10):1510–1516

    CAS  PubMed  Google Scholar 

  111. van den Bos E, de Rooij M, Miers AC, Bokhorst CL, Westenberg PM (2014) Adolescents’ increasing stress response to social evaluation: pubertal effects on cortisol and alpha-amylase during public speaking. Child Dev 85(1):220–236

    PubMed  Google Scholar 

  112. Solomon MB, Herman JP (2009) Sex differences in psychopathology: of gonads, adrenals and mental illness. Physiol Behav 97(2):250–258

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Vaillancourt T, Duku E, Decatanzaro D, Macmillan H, Muir C, Schmidt LA (2008) Variation in hypothalamic-pituitary-adrenal axis activity among bullied and non-bullied children. Aggress Behav 34(3):294–305

    PubMed  Google Scholar 

  114. Trickett PK, Gordis E, Peckins MK, Susman EJ (2014) Stress reactivity in maltreated and comparison male and female young adolescents. Child Maltreat 19(1):27–37

    PubMed  Google Scholar 

  115. Bosch NM, Riese H, Reijneveld SA et al (2012) Timing matters: long term effects of adversities from prenatal period up to adolescence on adolescents’ cortisol stress response. The TRAILS study. Psychoneuroendocrinology 37(9):1439–1447

    CAS  PubMed  Google Scholar 

  116. Licht CM, Vreeburg SA, van Reedt Dortland AK et al (2010) Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. J Clin Endocrinol Metab 95(5):2458–2466

    CAS  PubMed  Google Scholar 

  117. Loewy AD, Spyer KM (1990) Central regulation of autonomic functions. Oxford University Press, Oxford

    Google Scholar 

  118. Davis AM, Natelson BH (1993) Brain-heart interactions. The neurocardiology of arrhythmia and sudden cardiac death. Texas Heart Institute Journal/from the Texas Heart Institute of St. Luke’s Episcopal Hospital, Texas Children’s Hospital 20(3):158–169

    CAS  Google Scholar 

  119. Saper CB (2004) Central autonomic system. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, Amsterdam, pp 761–796

    Google Scholar 

  120. Stiedl O, Youn J, Jansen RF (2010) Cardiovascular conditioning: neural substrates. In: Koob GF, LeMoal M, Thompson RF (eds) Encyclopedia of behavioral neuroscience, vol 1. Elsevier, Amsterdam, pp 226–235

    Google Scholar 

  121. Thayer JF, Lane RD (2009) Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33(2):81–88

    PubMed  Google Scholar 

  122. Thayer JF, Sternberg E (2006) Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci 1088:361–372

    CAS  PubMed  Google Scholar 

  123. Ter Horst GJ, Hautvast RW, De Jongste MJ, Korf J (1996) Neuroanatomy of cardiac activity-regulating circuitry: a transneuronal retrograde viral labelling study in the rat. Eur J Neurosci 8(10):2029–2041

    PubMed  Google Scholar 

  124. Agorastos A, Boel JA, Heppner PS et al (2013) Diminished vagal activity and blunted diurnal variation of heart rate dynamics in posttraumatic stress disorder. Stress 16(3):300–310

    PubMed  Google Scholar 

  125. Kemp AH, Quintana DS (2013) The relationship between mental and physical health: insights from the study of heart rate variability. Int J Psychophysiol 89(3):288–296

    PubMed  Google Scholar 

  126. Kemp AH, Quintana DS, Gray MA, Felmingham KL, Brown K, Gatt JM (2010) Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry 67(11):1067–1074

    CAS  PubMed  Google Scholar 

  127. Bedi US, Arora R (2007) Cardiovascular manifestations of posttraumatic stress disorder. J Natl Med Assoc 99(6):642–649

    PubMed  PubMed Central  Google Scholar 

  128. Boscarino JA (2004) Posttraumatic stress disorder and physical illness: results from clinical and epidemiologic studies. Ann N Y Acad Sci 1032:141–153

    PubMed  Google Scholar 

  129. Boscarino JA (2008) A prospective study of PTSD and early-age heart disease mortality among Vietnam veterans: implications for surveillance and prevention. Psychosom Med 70(6):668–676

    PubMed  PubMed Central  Google Scholar 

  130. Gorman JM, Sloan RP (2000) Heart rate variability in depressive and anxiety disorders. Am Heart J 140(4 Suppl):77–83

    CAS  PubMed  Google Scholar 

  131. Carney RM, Freedland KE, Veith RC (2005) Depression, the autonomic nervous system, and coronary heart disease. Psychosom Med 67(Suppl 1):S29–S33

    PubMed  Google Scholar 

  132. Harrison NA, Cooper E, Voon V, Miles K, Critchley HD (2013) Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain Behav Immun 31:189–196

    PubMed  PubMed Central  Google Scholar 

  133. Kamphuis MH, Geerlings MI, Dekker JM et al (2007) Autonomic dysfunction: a link between depression and cardiovascular mortality? The FINE study. Eur J Cardiovasc Prev Rehabil 14(6):796–802

    PubMed  Google Scholar 

  134. Otte C, Neylan TC, Pole N et al (2005) Association between childhood trauma and catecholamine response to psychological stress in police academy recruits. Biol Psychiatry 57(1):27–32

    CAS  PubMed  Google Scholar 

  135. O’Hare C, McCrory C, O’Leary N, O’Brien H, Kenny RA (2017) Childhood trauma and lifetime syncope burden among older adults. J Psychosom Res 97:63–69

    PubMed  Google Scholar 

  136. Agorastos A, Kellner M, Baker DG, Stiedl O. Diminished vagal and/or increased sympathetic activity in post-traumatic stress disorder. In: Martin C, Preedy VR, Patel VB, eds. The Comprehensive Guide to Post-Traumatic Stress Disorders. Berlin (in print): Springer; 2015

  137. De Bellis MD, Chrousos GP, Dorn LD et al (1994) Hypothalamic-pituitary-adrenal axis dysregulation in sexually abused girls. J Clin Endocrinol Metab 78(2):249–255

    PubMed  Google Scholar 

  138. Gordis EB, Granger DA, Susman EJ, Trickett PK (2008) Salivary alpha amylase-cortisol asymmetry in maltreated youth. Horm Behav 53(1):96–103

    CAS  PubMed  Google Scholar 

  139. Pervanidou P, Kolaitis G, Charitaki S et al (2007) Elevated morning serum interleukin (IL)-6 or evening salivary cortisol concentrations predict posttraumatic stress disorder in children and adolescents six months after a motor vehicle accident. Psychoneuroendocrinology 32(8–10):991–999

    CAS  PubMed  Google Scholar 

  140. Pervanidou P, Kolaitis G, Charitaki S et al (2007) The natural history of neuroendocrine changes in pediatric posttraumatic stress disorder (PTSD) after motor vehicle accidents: progressive divergence of noradrenaline and cortisol concentrations over time. Biol Psychiatry 62(10):1095–1102

    CAS  PubMed  Google Scholar 

  141. Pace TW, Heim CM (2011) A short review on the psychoneuroimmunology of posttraumatic stress disorder: from risk factors to medical comorbidities. Brain Behav Immun 25(1):6–13

    CAS  PubMed  Google Scholar 

  142. Pace TW, Hu F, Miller AH (2007) Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 21(1):9–19

    CAS  PubMed  Google Scholar 

  143. Cain DW, Cidlowski JA (2017) Immune regulation by glucocorticoids. Nat Rev Immunol. 17(4):233–247

    CAS  PubMed  Google Scholar 

  144. Menard C, Pfau ML, Hodes GE, Russo SJ (2017) Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 42(1):62–80

    CAS  PubMed  Google Scholar 

  145. Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun 21(7):901–912

    CAS  PubMed  Google Scholar 

  146. Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332(20):1351–1362

    CAS  PubMed  Google Scholar 

  147. Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5(3):243–251

    CAS  PubMed  Google Scholar 

  148. Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6(4):318–328

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Rohleder N, Karl A (2006) Role of endocrine and inflammatory alterations in comorbid somatic diseases of post-traumatic stress disorder. Minerva Endocrinol 31(4):273–288

    CAS  PubMed  Google Scholar 

  150. Gill JM, Saligan L, Woods S, Page G (2009) PTSD is associated with an excess of inflammatory immune activities. Perspect Psychiatr Care 45(4):262–277

    PubMed  Google Scholar 

  151. Hoge EA, Brandstetter K, Moshier S, Pollack MH, Wong KK, Simon NM (2009) Broad spectrum of cytokine abnormalities in panic disorder and posttraumatic stress disorder. Depression and Anxiety 26(5):447–455

    CAS  PubMed  Google Scholar 

  152. Wei L, Simen A, Mane S, Kaffman A (2012) Early life stress inhibits expression of a novel innate immune pathway in the developing hippocampus. Neuropsychopharmacology 37(2):567–580

    CAS  PubMed  Google Scholar 

  153. Chida Y, Sudo N, Sonoda J, Hiramoto T, Kubo C (2007) Early-life psychological stress exacerbates adult mouse asthma via the hypothalamus-pituitary-adrenal axis. Am J Respir Crit Care Med 175(4):316–322

    CAS  PubMed  Google Scholar 

  154. Danese A, Moffitt TE, Pariante CM, Ambler A, Poulton R, Caspi A (2008) Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry 65(4):409–415

    PubMed  PubMed Central  Google Scholar 

  155. Danese A, Pariante CM, Caspi A, Taylor A, Poulton R (2007) Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A 104(4):1319–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Danese A, JL S (2017) Psychoneuroimmunology of early-life stress: the hidden wounds of childhood trauma? Neuropsychopharmacology 42(1):99–114

    CAS  PubMed  Google Scholar 

  157. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T (2017) Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 42(1):254–270

    CAS  PubMed  Google Scholar 

  158. Matteoli G, Boeckxstaens GE (2013) The vagal innervation of the gut and immune homeostasis. Gut 62(8):1214–1222

    CAS  PubMed  Google Scholar 

  159. Ohira H, Matsunaga M, Osumi T et al (2013) Vagal nerve activity as a moderator of brain-immune relationships. J Neuroimmunol 260(1–2):28–36

    CAS  PubMed  Google Scholar 

  160. Daskalakis NP, Cohen H, Nievergelt CM et al (2016) New translational perspectives for blood-based biomarkers of PTSD: from glucocorticoid to immune mediators of stress susceptibility. Exp Neurol 284(Pt B):133–140

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Miller GE, Cohen S, Ritchey AK (2002) Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health Psychol 21(6):531–541

    PubMed  Google Scholar 

  162. Avitsur R, Powell N, Padgett DA, Sheridan JF (2009) Social interactions, stress, and immunity. Immunol Allergy Clin N Am 29(2):285–293

    Google Scholar 

  163. Engler H, Bailey MT, Engler A, Stiner-Jones LM, Quan N, Sheridan JF (2008) Interleukin-1 receptor type 1-deficient mice fail to develop social stress-associated glucocorticoid resistance in the spleen. Psychoneuroendocrinology 33(1):108–117

    CAS  PubMed  Google Scholar 

  164. Saper CB (2013) The central circadian timing system. Curr Opin Neurobiol 23(5):747–751

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200(1):3–22

    CAS  PubMed  Google Scholar 

  166. Gan EH, Quinton R (2010) Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones. Prog Brain Res 181:111–126

    CAS  PubMed  Google Scholar 

  167. Nader N, Chrousos GP, Kino T (2010) Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab 21(5):277–286

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Qian X, Droste SK, Lightman SL, Reul JMHM, Linthorst ACE (2012) Circadian and ultradian rhythms of free glucocorticoid hormone are highly synchronized between the blood, the subcutaneous tissue, and the brain. Endocrinology 153(9):4346–4353

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Oster H, Damerow S, Kiessling S et al (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4(2):163–173

    CAS  PubMed  Google Scholar 

  170. Clow A, Hucklebridge F, Stalder T, Evans P, Thorn L (2010) The cortisol awakening response: more than a measure of HPA axis function. Neurosci Biobehav Rev 35(1):97–103

    CAS  PubMed  Google Scholar 

  171. Wu YH, Zhou JN, Balesar R et al (2006) Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J Comp Neurol 499(6):897–910

    CAS  PubMed  Google Scholar 

  172. Charmandari E, Chrousos GP, Lambrou GI et al (2011) Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One 6(9):e25612

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Chrousos GP, Kino T (2009) Glucocorticoid signaling in the cell. Expanding clinical implications to complex human behavioral and somatic disorders. Ann N Y Acad Sci 1179:153–166

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Vandewalle G, Middleton B, Rajaratnam SM et al (2007) Robust circadian rhythm in heart rate and its variability: influence of exogenous melatonin and photoperiod. J Sleep Res 16(2):148–155

    PubMed  Google Scholar 

  175. Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F (2012) Circadian rhythms and cardiovascular health. Sleep Med Rev 16(2):151–166

    PubMed  Google Scholar 

  176. Kalsbeek A, Yi CX, la Fleur SE, Buijs RM, Fliers E. Suprachiasmatic nucleus and autonomic nervous system influences on awakening from sleep. Int Rev Neurobiol 2010;93:91–107

  177. Germain A, Buysse DJ, Nofzinger E (2008) Sleep-specific mechanisms underlying posttraumatic stress disorder: integrative review and neurobiological hypotheses. Sleep Med Rev 12(3):185–195

    PubMed  Google Scholar 

  178. Mellman TA, Hipolito MM (2006) Sleep disturbances in the aftermath of trauma and posttraumatic stress disorder. CNS Spectrums 11(8):611–615

    PubMed  Google Scholar 

  179. Agorastos A, Kellner M, Baker DG, Otte C (2014) When time stands still. an integrative review on the role of chronodisruption in PTSD. Current Opinion in Psychiatry 27:385–392

    PubMed  Google Scholar 

  180. Erren TC, Reiter RJ (2009) Defining chronodisruption. J Pineal Res 46(3):245–247

    CAS  PubMed  Google Scholar 

  181. Zelinski EL, Deibel SH, McDonald RJ (2014) The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body. Neurosci Biobehav Rev 24(40C):80–101 [Epub ahead of print]

    Google Scholar 

  182. Erren TC, Reiter RJ (2013) Revisiting chronodisruption: when the physiological nexus between internal and external times splits in humans. Naturwissenschaften 100(4):291–298

    CAS  PubMed  Google Scholar 

  183. Meerlo P, Sgoifo A, Suchecki D (2008) Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev 12(3):197–210

    PubMed  Google Scholar 

  184. Weibel L, Maccari S, Van Reeth O (2002) Circadian clock functioning is linked to acute stress reactivity in rats. J Biol Rhythm 17(5):438–446

    CAS  Google Scholar 

  185. Pina G, Brun J, Tissot S, Claustrat B (2010) Long-term alteration of daily melatonin, 6-sulfatoxymelatonin, cortisol, and temperature profiles in burn patients: a preliminary report. Chronobiol Int 27(2):378–392

    CAS  PubMed  Google Scholar 

  186. Paredes SD, Sanchez S, Parvez H, Rodriguez AB, Barriga C (2007) Altered circadian rhythms of corticosterone, melatonin, and phagocytic activity in response to stress in rats. Neuro Endocrinol Lett 28(4):489–495

    PubMed  Google Scholar 

  187. Gogenur I, Ocak U, Altunpinar O, Middleton B, Skene DJ, Rosenberg J (2007) Disturbances in melatonin, cortisol and core body temperature rhythms after major surgery. World J Surg 31(2):290–298

    PubMed  Google Scholar 

  188. Christiansen S, Bouzinova EV, Palme R, Wiborg O. Circadian activity of the hypothalamic-pituitary-adrenal axis is differentially affected in the rat chronic mild stress model of depression. Stress. 2012

  189. Touma C, Fenzl T, Ruschel J et al (2009) Rhythmicity in mice selected for extremes in stress reactivity: behavioural, endocrine and sleep changes resembling endophenotypes of major depression. PLoS One 4(1):e4325

    PubMed  PubMed Central  Google Scholar 

  190. Lavie P (2001) Sleep disturbances in the wake of traumatic events. N Engl J Med 345(25):1825–1832

    CAS  PubMed  Google Scholar 

  191. Philbert J, Pichat P, Beeske S, Decobert M, Belzung C, Griebel G (2011) Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: a mouse model of post-traumatic stress disorder (PTSD). Behav Brain Res 221(1):149–154

    CAS  PubMed  Google Scholar 

  192. Germain A (2013) Sleep disturbances as the hallmark of PTSD: where are we now? Am J Psychiatry 170(4):372–382

    PubMed  PubMed Central  Google Scholar 

  193. Mrdalj J, Pallesen S, Milde AM et al (2013) Early and later life stress alter brain activity and sleep in rats. PLoS One 8(7):e69923

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Schafer V, Bader K (2013) Relationship between early-life stress load and sleep in psychiatric outpatients: a sleep diary and actigraphy study. Stress and Health: journal of the International Society for the Investigation of Stress 29(3):177–189

    Google Scholar 

  195. Greenfield EA, Lee C, Friedman EL, Springer KW (2011) Childhood abuse as a risk factor for sleep problems in adulthood: evidence from a U.S. national study. Ann Behav Med 42(2):245–256

    PubMed  PubMed Central  Google Scholar 

  196. Steine IM, Winje D, Krystal JH et al (2017) Cumulative childhood maltreatment and its dose-response relation with adult symptomatology: findings in a sample of adult survivors of sexual abuse. Child Abuse Negl 65:99–111

    PubMed  Google Scholar 

  197. Wang Y, Raffeld MR, Slopen N, Hale L, Dunn EC (2016) Childhood adversity and insomnia in adolescence. Sleep Med 21:12–18

    PubMed  PubMed Central  Google Scholar 

  198. Baiden P, Fallon B, den Dunnen W, Boateng GO (2015) The enduring effects of early-childhood adversities and troubled sleep among Canadian adults: a population-based study. Sleep Med 16(6):760–767

    PubMed  Google Scholar 

  199. Koskenvuo K, Hublin C, Partinen M, Paunio T, Koskenvuo M (2010) Childhood adversities and quality of sleep in adulthood: a population-based study of 26,000 Finns. Sleep Med 11(1):17–22

    PubMed  Google Scholar 

  200. Taylor DJ, Pruiksma KE, Hale WJ et al (2016) Prevalence, correlates, and predictors of insomnia in the US Army prior to deployment. Sleep 39(10):1795–1806

    PubMed  PubMed Central  Google Scholar 

  201. Thordardottir EB, Hansdottir I, Valdimarsdottir UA, Shipherd JC, Resnick H, Gudmundsdottir B (2016) The manifestations of sleep disturbances 16 years post-trauma. Sleep 39(8):1551–1554

    PubMed  PubMed Central  Google Scholar 

  202. Petrov ME, Davis MC, Belyea MJ, Zautra AJ (2016) Linking childhood abuse and hypertension: sleep disturbance and inflammation as mediators. J Behav Med 39(4):716–726

    PubMed  PubMed Central  Google Scholar 

  203. Lind MJ, Aggen SH, Kendler KS, York TP, Amstadter AB (2016) An epidemiologic study of childhood sexual abuse and adult sleep disturbances. Psychological Trauma: Theory, Research, Practice and Policy 8(2):198–205

    Google Scholar 

  204. Kajeepeta S, Gelaye B, Jackson CL, Williams MA (2015) Adverse childhood experiences are associated with adult sleep disorders: a systematic review. Sleep Med 16(3):320–330

    PubMed  PubMed Central  Google Scholar 

  205. Bader K, Schafer V, Schenkel M, Nissen L, Schwander J (2007) Adverse childhood experiences associated with sleep in primary insomnia. J Sleep Res 16(3):285–296

    PubMed  Google Scholar 

  206. Mellman TA, Bustamante V, Fins AI, Pigeon WR, Nolan B (2002) REM sleep and the early development of posttraumatic stress disorder. Am J Psychiatry 159(10):1696–1701

    PubMed  Google Scholar 

  207. Mellman TA, Knorr BR, Pigeon WR, Leiter JC, Akay M (2004) Heart rate variability during sleep and the early development of posttraumatic stress disorder. Biol Psychiatry 55(9):953–956

    PubMed  Google Scholar 

  208. Spoormaker VI, Montgomery P (2008) Disturbed sleep in post-traumatic stress disorder: secondary symptom or core feature? Sleep Med Rev 12(3):169–184

    PubMed  Google Scholar 

  209. Malan-Muller S, Seedat S, Hemmings SM (2014) Understanding posttraumatic stress disorder: insights from the methylome. Genes Brain Behav. 13(1):52–68

    CAS  PubMed  Google Scholar 

  210. Skelton K, Ressler KJ, Norrholm SD, Jovanovic T, Bradley-Davino B (2012) PTSD and gene variants: new pathways and new thinking. Neuropharmacology 62(2):628–637

    CAS  PubMed  Google Scholar 

  211. Caspi A, McClay J, Moffitt TE et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854

    CAS  PubMed  Google Scholar 

  212. Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    CAS  PubMed  Google Scholar 

  213. Gillespie CF, Phifer J, Bradley B, Ressler KJ (2009) Risk and resilience: genetic and environmental influences on development of the stress response. Depression Anxiety 26(11):984–992

    CAS  PubMed  Google Scholar 

  214. Hauger RL, Olivares-Reyes JA, Dautzenberg FM, Lohr JB, Braun S, Oakley RH (2012) Molecular and cell signaling targets for PTSD pathophysiology and pharmacotherapy. Neuropharmacology 62(2):705–714

    CAS  PubMed  Google Scholar 

  215. Binder EB, Bradley RG, Liu W et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299(11):1291–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Klengel T, Mehta D, Anacker C et al (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16(1):33–41

    CAS  PubMed  Google Scholar 

  217. Bevilacqua L, Carli V, Sarchiapone M et al (2012) Interaction between FKBP5 and childhood trauma and risk of aggressive behavior. Arch Gen Psychiatry 69(1):62–70

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Roy A, Gorodetsky E, Yuan Q, Goldman D, Enoch MA (2010) Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology 35(8):1674–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Zimmermann P, Bruckl T, Nocon A et al (2011) Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: results from a 10-year prospective community study. Am J Psychiatry 168(10):1107–1116

    PubMed  Google Scholar 

  220. Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M (2011) Gene-environment interactions between CRHR1 variants and physical assault in suicide attempts. Genes Brain Behav 10(6):663–672

    CAS  PubMed  Google Scholar 

  221. Bradley RG, Binder EB, Epstein MP et al (2008) Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry 65(2):190–200

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Heim C, Bradley B, Mletzko TC et al (2009) Effect of childhood trauma on adult depression and neuroendocrine function: sex-specific moderation by CRH receptor 1 gene. Front Behav Neurosci 3:41

    PubMed  PubMed Central  Google Scholar 

  223. Teicher MH, Samson JA, Anderson CM, Ohashi K (2016) The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci 17(10):652–666

    CAS  PubMed  Google Scholar 

  224. White MG, Bogdan R, Fisher PM, Munoz KE, Williamson DE, Hariri AR (2012) FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes Brain Behav 11(7):869–878

    CAS  PubMed  Google Scholar 

  225. Holz NE, Buchmann AF, Boecker R et al (2015) Role of FKBP5 in emotion processing: results on amygdala activity, connectivity and volume. Brain Struct Funct 220(3):1355–1368

    CAS  PubMed  Google Scholar 

  226. Grabe HJ, Wittfeld K, Van der Auwera S et al (2016) Effect of the interaction between childhood abuse and rs1360780 of the FKBP5 gene on gray matter volume in a general population sample. Hum Brain Mapp 37(4):1602–1613

    PubMed  Google Scholar 

  227. Bogdan R, Williamson DE, Hariri AR (2012) Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 169(5):515–522

    PubMed  PubMed Central  Google Scholar 

  228. Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20(8):350–358

    CAS  PubMed  Google Scholar 

  229. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  PubMed  Google Scholar 

  230. Yehuda R, Bierer LM (2009) The relevance of epigenetics to PTSD: implications for the DSM-V. J Trauma Stress 22(5):427–434

    PubMed  PubMed Central  Google Scholar 

  231. Klengel T, Pape J, Binder EB, Mehta D (2014) The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology

  232. Schmidt U, Holsboer F, Rein T (2011) Epigenetic aspects of posttraumatic stress disorder. Dis Markers 30(2–3):77–87

    PubMed  PubMed Central  Google Scholar 

  233. Zannas AS, Provencal N, Binder EB (2015) Epigenetics of posttraumatic stress disorder: current evidence, challenges, and future directions. Biol Psychiatry

  234. Almli LM, Stevens JS, Smith AK et al (2015) A genome-wide identified risk variant for PTSD is a methylation quantitative trait locus and confers decreased cortical activation to fearful faces. Am J Med Genet B Neuropsychiatr Genet 168B(5):327–336

    PubMed  PubMed Central  Google Scholar 

  235. Wingo AP, Almli LM, Stevens JJ et al (2015) DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression. Nat Commun 6:10106

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Mehta D, Klengel T, Conneely KN et al (2013) Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci U S A 110(20):8302–8307

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Trollope AF, Gutierrez-Mecinas M, Mifsud KR, Collins A, Saunderson EA, Reul JMHM (2012) Stress, epigenetic control of gene expression and memory formation. Exp Neurol 233(1):3–11

    CAS  PubMed  Google Scholar 

  238. Stankiewicz AM, Swiergiel AH, Lisowski P (2013) Epigenetics of stress adaptations in the brain. Brain Res Bull 98:76–92

    CAS  PubMed  Google Scholar 

  239. Reul JMHM (2014) Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways. Front Psychiatry 5:5

    PubMed  PubMed Central  Google Scholar 

  240. McGowan PO (2013) Epigenomic mechanisms of early adversity and HPA dysfunction: considerations for PTSD research. Front Psychiatry 4:110

    PubMed  PubMed Central  Google Scholar 

  241. Yehuda R, Daskalakis NP, Desarnaud F et al (2013) Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psychiatry 4:118

    PubMed  PubMed Central  Google Scholar 

  242. Yehuda R, Flory JD, Bierer LM et al (2015) Lower methylation of glucocorticoid receptor gene promoter 1F in peripheral blood of veterans with posttraumatic stress disorder. Biol Psychiatry 77(4):356–364

    CAS  PubMed  Google Scholar 

  243. McGowan PO, Sasaki A, D’Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3(2):97–106

    PubMed  Google Scholar 

  245. Houtepen LC, Vinkers CH, Carrillo-Roa T et al (2016) Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat Commun 7:10967

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Bick J, Naumova O, Hunter S et al (2012) Childhood adversity and DNA methylation of genes involved in the hypothalamus-pituitary-adrenal axis and immune system: whole-genome and candidate-gene associations. Dev Psychopathol 24(4):1417–1425

    PubMed  PubMed Central  Google Scholar 

  247. Dannlowski U, Stuhrmann A, Beutelmann V et al (2012) Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry 71(4):286–293

    PubMed  Google Scholar 

  248. Taylor SE (2010) Mechanisms linking early life stress to adult health outcomes. Proc Natl Acad Sci U S A 107(19):8507–8512

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Chen Y, Baram TZ (2016) Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology 41(1):197–206

    PubMed  Google Scholar 

  250. Grassi-Oliveira R, Ashy M, Stein LM (2008) Psychobiology of childhood maltreatment: effects of allostatic load? Rev Bras Psiquiatr 30(1):60–68

    PubMed  Google Scholar 

  251. Paquola C, Bennett MR, Lagopoulos J (2016) Understanding heterogeneity in grey matter research of adults with childhood maltreatment—a meta-analysis and review. Neurosci Biobehav Rev 69:299–312

    PubMed  Google Scholar 

  252. Thomaes K, Dorrepaal E, Draijer N et al (2010) Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. J Clin Psychiatry 71(12):1636–1644

    PubMed  Google Scholar 

  253. Lim L, Radua J, Rubia K (2014) Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. Am J Psychiatry 171(8):854–863

    PubMed  Google Scholar 

  254. Van Dam NT, Rando K, Potenza MN, Tuit K, Sinha R (2014) Childhood maltreatment, altered limbic neurobiology, and substance use relapse severity via trauma-specific reductions in limbic gray matter volume. JAMA Psychiatry 71(8):917–925

    PubMed  PubMed Central  Google Scholar 

  255. van Velzen LS, Schmaal L, Jansen R et al (2016) Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology. Soc Cogn Affect Neurosci 11(11):1841–1852

    PubMed  PubMed Central  Google Scholar 

  256. Aust S, Stasch J, Jentschke S et al (2014) Differential effects of early life stress on hippocampus and amygdala volume as a function of emotional abilities. Hippocampus 24(9):1094–1101

    PubMed  Google Scholar 

  257. Edmiston EE, Wang F, Mazure CM et al (2011) Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Arch Ped Adolesc Med 165(12):1069–1077

    Google Scholar 

  258. Coplan JD, Fathy HM, Jackowski AP et al (2014) Early life stress and macaque amygdala hypertrophy: preliminary evidence for a role for the serotonin transporter gene. Front Behav Neurosci 8:342

    PubMed  PubMed Central  Google Scholar 

  259. Swartz JR, Williamson DE, Hariri AR (2015) Developmental change in amygdala reactivity during adolescence: effects of family history of depression and stressful life events. Am J Psychiatry 172(3):276–283

    PubMed  Google Scholar 

  260. Dannlowski U, Kugel H, Huber F et al (2013) Childhood maltreatment is associated with an automatic negative emotion processing bias in the amygdala. Hum Brain Mapp 34(11):2899–2909

    PubMed  Google Scholar 

  261. Grant MM, Cannistraci C, Hollon SD, Gore J, Shelton R (2011) Childhood trauma history differentiates amygdala response to sad faces within MDD. J Psychiatr Res 45(7):886–895

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AA and PP managed all the literature searches. AA wrote the first draft of the paper. GPC, PP, and GK revised the draft for important intellectual content. All authors have contributed to, read, and approved the final version of the manuscript.

Corresponding author

Correspondence to Agorastos Agorastos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agorastos, A., Pervanidou, P., Chrousos, G.P. et al. Early life stress and trauma: developmental neuroendocrine aspects of prolonged stress system dysregulation. Hormones 17, 507–520 (2018). https://doi.org/10.1007/s42000-018-0065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-018-0065-x

Keywords

Navigation