Skip to main content
Log in

Sarcopenic obesity

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Sarcopenic obesity, a chronic condition, is today a major public health problem with increasing prevalence worldwide, which is due to progressively aging populations, the increasing prevalence of obesity, and the changes in lifestyle during the last several decades. Patients usually present to healthcare facilities for obesity and related comorbidities (type 2 diabetes mellitus, non-alcoholic fatty liver disease, dyslipidemia, hypertension, and cardiovascular disease) or for non-specific symptoms related to sarcopenia per se (e.g., fatigue, weakness, and frailty). Because of the non-specificity of the symptoms, sarcopenic obesity remains largely unsuspected and undiagnosed. The pathogenesis of sarcopenic obesity is multifactorial. There is interplay between aging, sedentary lifestyle, and unhealthy dietary habits, and insulin resistance, inflammation, and oxidative stress, resulting in a quantitative and qualitative decline in muscle mass and an increase in fat mass. Myokines, including myostatin and irisin, and adipokines play a prominent role in the pathogenesis of sarcopenic obesity. It has been suggested that a number of disorders affecting metabolism, physical capacity, and quality of life may be attributed to sarcopenic obesity, although it is not as yet established whether sarcopenia and obesity act synergistically. There is to date no approved pharmacological treatment for sarcopenic obesity. The cornerstones of its management are weight loss and adequate protein intake combined with exercise, the latter in order to reduce the loss of muscle mass observed during weight loss following diet unpaired with exercise. A consensus on the definition of sarcopenic obesity is considered essential to facilitate the performance of mechanistic studies and clinical trials aimed at deepening our knowledge, thus enabling improved management of affected individuals in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans WJ, Campbell WW (1993) Sarcopenia and age-related changes in body composition and functional capacity. J Nutr 123:465–468

    Article  PubMed  CAS  Google Scholar 

  2. Rogers MA, Evans WJ (1993) Changes in skeletal muscle with aging: effects of exercise training. Exerc Sport Sci Rev 21:65–102

    Article  PubMed  CAS  Google Scholar 

  3. Thomas DR (2007) Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin Nutr 26:389–399

    Article  PubMed  Google Scholar 

  4. Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256

    Article  PubMed  Google Scholar 

  5. Cho Y, Shin SY, Shin MJ (2015) Sarcopenic obesity is associated with lower indicators of psychological health and quality of life in Koreans. Nutr Res 35:384–392

    Article  PubMed  CAS  Google Scholar 

  6. Tian S, Xu Y (2016) Association of sarcopenic obesity with the risk of all-cause mortality: a meta-analysis of prospective cohort studies. Geriatr Gerontol Int 16:155–166

    Article  PubMed  Google Scholar 

  7. Choi KM (2013) Sarcopenia and sarcopenic obesity. Endocrinol Metab (Seoul) 28:86–89

    Article  Google Scholar 

  8. Koundourakis NE, Androulakis N, Spyridaki EC et al (2014) Effect of different seasonal strength training protocols on circulating androgen levels and performance parameters in professional soccer players. Hormones (Athens) 13:104–118

    Article  Google Scholar 

  9. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen LK, Liu LK, Woo J et al (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15:95–101

    Article  PubMed  Google Scholar 

  11. Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dam TT, Peters KW, Fragala M et al (2014) An evidence-based comparison of operational criteria for the presence of sarcopenia. J Gerontol A Biol Sci Med Sci 69:584–590

    Article  PubMed  PubMed Central  Google Scholar 

  13. Molino S, Dossena M, Buonocore D, Verri M (2016) Sarcopenic obesity: an appraisal of the current status of knowledge and management in elderly people. J Nutr Health Aging 20:780–788

    Article  PubMed  CAS  Google Scholar 

  14. Zoico E, Di Francesco V, Guralnik JM et al (2004) Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women. Int J Obes Relat Metab Disord 28:234–241

    Article  PubMed  CAS  Google Scholar 

  15. Levine ME, Crimmins EM (2012) The impact of insulin resistance and inflammation on the association between sarcopenic obesity and physical functioning. Obesity (Silver Spring) 20:2101–2106

    Article  CAS  Google Scholar 

  16. Kim TN, Yang SJ, Yoo HJ et al (2009) Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int J Obes 33:885–892

    Article  CAS  Google Scholar 

  17. Bouchard DR, Dionne IJ, Brochu M (2009) Sarcopenic/obesity and physical capacity in older men and women: data from the nutrition as a determinant of successful aging (NuAge)—the Quebec longitudinal study. Obesity (Silver Spring) 17:2082–2088

    Article  Google Scholar 

  18. Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    Article  PubMed  CAS  Google Scholar 

  19. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE (2008) A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 33:997–1006

    Article  PubMed  Google Scholar 

  20. Davison KK, Ford ES, Cogswell ME, Dietz WH (2002) Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J Am Geriatr Soc 50:1802–1809

    Article  PubMed  Google Scholar 

  21. Schrager MA, Metter EJ, Simonsick E et al (2007) Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol 102:919–925

    Article  PubMed  Google Scholar 

  22. Batsis JA, Barre LK, Mackenzie TA, Pratt SI, Lopez-Jimenez F, Bartels SJ (2013) Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-energy X-ray absorptiometry data from the National Health and Nutrition Examination Survey 1999–2004. J Am Geriatr Soc 61:974–980

    Article  PubMed  Google Scholar 

  23. Prado CM, Gonzalez MC, Heymsfield SB (2015) Body composition phenotypes and obesity paradox. Curr Opin Clin Nutr Metab Care 18:535–551

    Article  PubMed  CAS  Google Scholar 

  24. Benton MJ, Whyte MD, Dyal BW (2011) Sarcopenic obesity: strategies for management. Am J Nurs 111:38–44

    Article  PubMed  Google Scholar 

  25. Polyzos SA, Kountouras J, Zavos C (2009) Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 9:299–314

    Article  PubMed  CAS  Google Scholar 

  26. Delmonico MJ, Harris TB, Visser M et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Khoury T, Asombang AW, Berzin TM, Cohen J, Pleskow DK, Mizrahi M (2017) The clinical implications of fatty pancreas: a concise review. Dig Dis Sci 62:2658–2667

    Article  PubMed  CAS  Google Scholar 

  28. Wannamethee SG, Atkins JL (2015) Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc 74:405–412

    Article  PubMed  Google Scholar 

  29. Polyzos SA, Kountouras J, Mantzoros CS (2017) Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol 42:92–108

    PubMed  Google Scholar 

  30. Kim TN, Park MS, Lim KI et al (2013) Relationships between sarcopenic obesity and insulin resistance, inflammation, and vitamin D status: the Korean Sarcopenic Obesity Study. Clin Endocrinol 78:525–532

    Article  CAS  Google Scholar 

  31. Kalinkovich A, Livshits G (2017) Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 35:200–221

    Article  PubMed  CAS  Google Scholar 

  32. Muscariello E, Nasti G, Siervo M et al (2016) Dietary protein intake in sarcopenic obese older women. Clin Interv Aging 11:133–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Oh C, Jeon BH, Reid Storm SN, Jho S, No JK (2017) The most effective factors to offset sarcopenia and obesity in the older Korean: physical activity, vitamin D, and protein intake. Nutrition 33:169–173

    Article  PubMed  CAS  Google Scholar 

  34. Manoy P, Anomasiri W, Yuktanandana P et al (2017) Elevated serum leptin levels are associated with low vitamin D, sarcopenic obesity, poor muscle strength, and physical performance in knee osteoarthritis. Biomarkers 22:723–730

    Article  PubMed  CAS  Google Scholar 

  35. Fulgoni VL 3rd (2008) Current protein intake in America: analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am J Clin Nutr 87:1554S–1557S

    Article  PubMed  CAS  Google Scholar 

  36. Donneyong MM, Taylor KC, Kerber RA, Hornung CA, Scragg R (2016) Is outdoor recreational activity an independent predictor of cardiovascular disease mortality—NHANES III? Nutr Metab Cardiovasc Dis 26:735–742

    Article  PubMed  CAS  Google Scholar 

  37. Polyzos SA, Mathew H, Mantzoros CS (2015) Irisin: a true, circulating hormone. Metabolism 64:1611–1618

    Article  PubMed  CAS  Google Scholar 

  38. Bergen HR 3rd, Farr JN, Vanderboom PM et al (2015) Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skelet Muscle 5:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chang JS, Kim TH, Nguyen TT, Park KS, Kim N, Kong ID (2017) Circulating irisin levels as a predictive biomarker for sarcopenia: a cross-sectional community-based study. Geriatr Gerontol Int 17:2266–2273

    Article  PubMed  Google Scholar 

  40. Cai C, Qian L, Jiang S et al (2017) Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget 8:34911–34922

    PubMed  PubMed Central  Google Scholar 

  41. Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cauley JA (2015) An overview of sarcopenic obesity. J Clin Densitom 18:499–505

    Article  PubMed  Google Scholar 

  43. An KO, Kim J (2016) Association of sarcopenia and obesity with multimorbidity in Korean adults: a nationwide cross-sectional study. J Am Med Dir Assoc 17(960):e961–e967

    Google Scholar 

  44. Tyrovolas S, Koyanagi A, Olaya B et al (2016) Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: a multi-continent study. J Cachexia Sarcopenia Muscle 7:312–321

    Article  PubMed  Google Scholar 

  45. Lim S, Kim JH, Yoon JW et al (2010) Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 33:1652–1654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kim TN, Park MS, Lim KI et al (2011) Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Res Clin Pract 93:285–291

    Article  PubMed  Google Scholar 

  47. Kang SY, Lim GE, Kim YK et al (2017) Association between sarcopenic obesity and metabolic syndrome in postmenopausal women: a cross-sectional study based on the Korean National Health and Nutritional Examination Surveys from 2008 to 2011. J Bone Metab 24:9–14

    Article  PubMed  PubMed Central  Google Scholar 

  48. Poggiogalle E, Lubrano C, Sergi G et al (2016) Sarcopenic obesity and metabolic syndrome in adult Caucasian subjects. J Nutr Health Aging 20:958–963

    Article  PubMed  CAS  Google Scholar 

  49. Ma J, Hwang SJ, McMahon GM et al (2016) Mid-adulthood cardiometabolic risk factor profiles of sarcopenic obesity. Obesity (Silver Spring) 24:526–534

    Article  Google Scholar 

  50. Baek SJ, Nam GE, Han KD et al (2014) Sarcopenia and sarcopenic obesity and their association with dyslipidemia in Korean elderly men: the 2008-2010 Korea National Health and Nutrition Examination Survey. J Endocrinol Investig 37:247–260

    Article  CAS  Google Scholar 

  51. Park SH, Park JH, Song PS et al (2013) Sarcopenic obesity as an independent risk factor of hypertension. J Am Soc Hypertens 7:420–425

    Article  PubMed  Google Scholar 

  52. Hong N, Lee EY, Kim CO (2015) Gamma-glutamyl transferase is associated with sarcopenia and sarcopenic obesity in community-dwelling older adults: results from the Fifth Korea National Health and Nutrition Examination Survey, 2010–2011. Endocr J 62:585–592

    Article  PubMed  CAS  Google Scholar 

  53. Carias S, Castellanos AL, Vilchez V et al (2016) Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J Gastroenterol Hepatol 31:628–633

    Article  PubMed  CAS  Google Scholar 

  54. Mintziori G, Polyzos SA (2016) Emerging and future therapies for nonalcoholic steatohepatitis in adults. Expert Opin Pharmacother 17:1937–1946

    Article  PubMed  CAS  Google Scholar 

  55. Kim JH, Cho JJ, Park YS (2015) Relationship between sarcopenic obesity and cardiovascular disease risk as estimated by the Framingham risk score. J Korean Med Sci 30:264–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Pedrero-Chamizo R, Gomez-Cabello A, Melendez A et al (2015) Higher levels of physical fitness are associated with a reduced risk of suffering sarcopenic obesity and better perceived health among the elderly: the EXERNET multi-center study. J Nutr Health Aging 19:211–217

    Article  PubMed  CAS  Google Scholar 

  57. Auyeung TW, Lee JS, Leung J, Kwok T, Woo J (2013) Adiposity to muscle ratio predicts incident physical limitation in a cohort of 3,153 older adults—an alternative measurement of sarcopenia and sarcopenic obesity. Age (Dordr) 35:1377–1385

    Article  CAS  Google Scholar 

  58. Jarosz PA, Bellar A (2009) Sarcopenic obesity: an emerging cause of frailty in older adults. Geriatr Nurs 30:64–70

    Article  PubMed  Google Scholar 

  59. Hirani V, Naganathan V, Blyth F et al (2017) Longitudinal associations between body composition, sarcopenic obesity and outcomes of frailty, disability, institutionalisation and mortality in community-dwelling older men: the Concord Health and Ageing in Men Project. Age Ageing 46:413–420

    Article  PubMed  Google Scholar 

  60. Waters DL, Hale L, Grant AM, Herbison P, Goulding A (2010) Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders. Osteoporos Int 21:351–357

    Article  PubMed  CAS  Google Scholar 

  61. Scott D, Seibel M, Cumming R et al (2017) Sarcopenic obesity and its temporal associations with changes in bone mineral density, incident falls, and fractures in older men: the concord health and ageing in men project. J Bone Miner Res 32:575–583

    Article  PubMed  CAS  Google Scholar 

  62. Scott D, Chandrasekara SD, Laslett LL, Cicuttini F, Ebeling PR, Jones G (2016) Associations of sarcopenic obesity and dynapenic obesity with bone mineral density and incident fractures over 5–10 years in community-dwelling older adults. Calcif Tissue Int 99:30–42

    Article  PubMed  CAS  Google Scholar 

  63. Scott D, Shore-Lorenti C, McMillan L et al (2018) Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch Gerontol Geriatr 75:125–131

    Article  PubMed  Google Scholar 

  64. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60

    Article  PubMed  CAS  Google Scholar 

  65. Ul-Haq Z, Mackay DF, Fenwick E, Pell JP (2013) Meta-analysis of the association between body mass index and health-related quality of life among adults, assessed by the SF-36. Obesity (Silver Spring) 21:E322–E327

    Article  Google Scholar 

  66. Batsis JA, Gill LE, Masutani RK et al (2017) Weight loss interventions in older adults with obesity: a systematic review of randomized controlled trials since 2005. J Am Geriatr Soc 65:257–268

    Article  PubMed  Google Scholar 

  67. Sun S, Lee H, Yim HW, Won HS, Ko YH (2017) The impact of sarcopenia on health-related quality of life in elderly people: Korean National Health and Nutrition Examination Survey. Korean J Intern Med. https://doi.org/10.3904/kjim.2017.182

  68. Beaudart C, Locquet M, Reginster JY, Delandsheere L, Petermans J, Bruyere O (2018) Quality of life in sarcopenia measured with the SarQoL(R): impact of the use of different diagnosis definitions. Aging Clin Exp Res 30:307–313

    Article  PubMed  Google Scholar 

  69. Silva Neto LS, Karnikowiski MG, Tavares AB, Lima RM (2012) Association between sarcopenia, sarcopenic obesity, muscle strength and quality of life variables in elderly women. Rev Bras Fisioter 16:360–367

    Article  PubMed  Google Scholar 

  70. Messier V, Karelis AD, Lavoie ME et al (2009) Metabolic profile and quality of life in class I sarcopenic overweight and obese postmenopausal women: a MONET study. Appl Physiol Nutr Metab 34:18–24

    Article  PubMed  Google Scholar 

  71. Weinheimer EM, Sands LP, Campbell WW (2010) A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr Rev 68:375–388

    Article  PubMed  Google Scholar 

  72. Poggiogalle E, Migliaccio S, Lenzi A, Donini LM (2014) Treatment of body composition changes in obese and overweight older adults: insight into the phenotype of sarcopenic obesity. Endocrine 47:699–716

    Article  PubMed  CAS  Google Scholar 

  73. Villareal DT, Aguirre L, Gurney AB et al (2017) Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med 376:1943–1955

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ (2017) Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J Am Geriatr Soc 65:827–832

    Article  PubMed  Google Scholar 

  75. Liao CD, Tsauo JY, Lin LF et al (2017) Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: a CONSORT-compliant prospective randomized controlled trial. Medicine (Baltimore) 96:e7115

    Article  Google Scholar 

  76. Gadelha AB, Paiva FM, Gauche R, de Oliveira RJ, Lima RM (2016) Effects of resistance training on sarcopenic obesity index in older women: a randomized controlled trial. Arch Gerontol Geriatr 65:168–173

    Article  PubMed  Google Scholar 

  77. Vasconcelos KS, Dias JM, Araujo MC, Pinheiro AC, Moreira BS, Dias RC (2016) Effects of a progressive resistance exercise program with high-speed component on the physical function of older women with sarcopenic obesity: a randomized controlled trial. Braz J Phys Ther 20:432–440

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wittmann K, Sieber C, von Stengel S et al (2016) Impact of whole body electromyostimulation on cardiometabolic risk factors in older women with sarcopenic obesity: the randomized controlled FORMOsA-sarcopenic obesity study. Clin Interv Aging 11:1697–1706

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kelly OJ, Gilman JC (2017) Can unconventional exercise be helpful in the treatment, management and prevention of osteosarcopenic obesity? Curr Aging Sci 10:106–121

    Article  PubMed  Google Scholar 

  80. Liao CD, Tsauo JY, Wu YT et al (2017) Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr 106:1078–1091

    Article  PubMed  CAS  Google Scholar 

  81. Kim H, Kim M, Kojima N et al (2016) Exercise and nutritional supplementation on community-dwelling elderly Japanese women with sarcopenic obesity: a randomized controlled trial. J Am Med Dir Assoc 17:1011–1019

    Article  PubMed  Google Scholar 

  82. Lopez-Lluch G, Navas P (2016) Calorie restriction as an intervention in ageing. J Physiol 594:2043–2060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Marty E, Liu Y, Samuel A, Or O, Lane J (2017) A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone 105:276–286

    Article  PubMed  Google Scholar 

  84. Becker C, Lord SR, Studenski SA et al (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3:948–957

    Article  PubMed  CAS  Google Scholar 

  85. Blackman MR, Sorkin JD, Munzer T et al (2002) Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288:2282–2292

    Article  PubMed  CAS  Google Scholar 

  86. Makimura H, Feldpausch MN, Rope AM et al (2012) Metabolic effects of a growth hormone-releasing factor in obese subjects with reduced growth hormone secretion: a randomized controlled trial. J Clin Endocrinol Metab 97:4769–4779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Polyzos SA, Anastasilakis AD, Efstathiadou ZA et al (2017) Irisin in metabolic diseases. Endocrine 59:260–274

  88. Mathus-Vliegen EM (2012) Prevalence, pathophysiology, health consequences and treatment options of obesity in the elderly: a guideline. Obes Facts 5:460–483

    Article  PubMed  CAS  Google Scholar 

  89. Mastino D, Robert M, Betry C, Laville M, Gouillat C, Disse E (2016) Bariatric surgery outcomes in sarcopenic obesity. Obes Surg 26:2355–2362

    Article  PubMed  Google Scholar 

  90. Drey M, Berr CM, Reincke M et al (2017) Cushing’s syndrome: a model for sarcopenic obesity. Endocrine 57:481–485

    Article  PubMed  CAS  Google Scholar 

  91. Flegal KM, Kit BK, Orpana H, Graubard BI (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. Jama 309:71–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyere O (2017) Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS One 12:e0169548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stergios A. Polyzos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyzos, S.A., Margioris, A.N. Sarcopenic obesity. Hormones 17, 321–331 (2018). https://doi.org/10.1007/s42000-018-0049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-018-0049-x

Keywords

Navigation