Skip to main content

Advertisement

Log in

Li-S Batteries: Challenges, Achievements and Opportunities

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

To realize a low-carbon economy and sustainable energy supply, the development of energy storage devices has aroused intensive attention. Lithium-sulfur (Li-S) batteries are regarded as one of the most promising next-generation battery devices because of their remarkable theoretical energy density, cost-effectiveness, and environmental benignity. However, the practical application of Li-S batteries is hindered by such challenges as low sulfur utilization (< 80%), fast capacity fade, short service life (< 200 redox cycles), and severe self-discharge. The reasons behind the challenges are: (1) low conductivity of the active materials, (2) large volume changes during redox cycling, (3) serious polysulfide shuttling and, (4) lithium-metal anode contamination/corrosion and dendrite formation. Significant achievements have been made to address these problems in the past decade. In this review, the recent advances in material synthesis and technology development are analysed in terms of the electrochemical performance of different Li-S battery components. The critical analysis was conducted based on the merits and shortcomings of the reported work on the issues facing the individual component. A versatile 3D-printing technique is also examined on its practicability for Li-S battery production. The insights on the rational structural design and reasonable parameters for Li-S batteries are highlighted along with the “five 5s” concept from a practical point of view. The remaining challenges are outlined for researchers to devote more efforts on the understanding and commercialization of the devices in terms of the material preparation, cell manufacturing, and characterization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [21]. Copyright © 2017, Institute of Process Engineering, Chinese Academy of Sciences. b Representing the charging and discharging curves for a typical example of Li-S battery. Reproduced with permission from Ref. [20]. Copyright © 2017, WILEY-VCH

Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Ref. [42]. Copyright © 2018, Elsevier. b Synthesis scheme of α-CoS/Co architecture on N-doped carbon polyhedron. Reproduced with permission from Ref. [51]. Copyright © 2019, The Royal Society of Chemistry. c Fabrication strategy of graphene wrapped MIL-101(Cr). d Cycling performance of a cell with MIL-101(Cr)/S cathode. (c, d) Reproduced with permission from Ref. [52]. Copyright © 2014, The Royal Society of Chemistry. e Schematic representation of sulfur/carbon hybrid fabrication via electrolysis. Reproduced with permission from Ref. [53]. Copyright © 2016, American Chemical Society

Fig. 6

Copyright © 2012, American Chemical Society. f XRD measurements of sulfur and porous carbon with different sulfur concentrations. Reproduced with permission from Ref. [83]. Copyright © 2015, WILEY-VCH. g Schematic illustration of mesoporous carbon electrode and cyclic performance of Li-S battery with various ratios of sulfur. Reproduced with permission from Ref. [84]. Copyright © 2011, The Royal Society of Chemistry. h Comparison of specific capacity of porous carbon according to surface area, pore volume and size for 100th discharge cycle. Reproduced with permission from Ref. [76]. Copyright © 2016, WILEY-VCH. i Representation of sulfur impregnation principle. Reproduced with permission from Ref. [85]. Copyright © 2015, WILEY-VCH. j Representation of polysulfide adsorption capability in porous carbon materials. Reproduced with permission from Ref. [86]. Copyright © 2016, WILEY-VCH

Fig. 7

Reproduced with permission from Ref. [101]. Copyright © 2013, Macmillan Publisher Limited. d Synthesis and advantages of MnO2. Reproduced with permission from Ref. [24]. Copyright © 2015, WILEY-VCH. e Distribution of Mn4+, change(s) of structure after introducing polysulfides, and distribution of Mn2+ and Mn4+ at Mn3O4, shrinkage and expansion after exposed to polysulfides. Reproduced with permission from Ref. [103]. Copyright © 2017, The Royal Society of Chemistry. f, g DFT calculations of binding geometry and b-values obtained from the plots. Reproduced with permission from Ref. [104]. Copyright © 2016, The Royal Society of Chemistry

Fig. 8

(ac) Reproduced with permission from Ref. [111]. Copyright © 2015, The Royal Society of Chemistry. d Hydroxyl-MXene and polysulfide interaction. Reproduced with permission from Ref. [117]. Copyright © 2016, WILEY-VCH. e Step-by-step synthesis of Fe3C@N‐GE-CNTs composite. f Representation of conjunction of graphene/CNTs/Fe3C characterized by HRTEM. g Plot of Coulombic efficiency and cycling performance of the S@FexS@N‐GE-CNTs composite at 10 C. (eg) Reproduced with permission from Ref. [118]. Copyright © 2016, WILEY-VCH

Fig. 9

(af) Reproduced with permission from Ref. [123]. Copyright © 2019, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [127]. Copyright © 2017, WILEY-VCH. b Chemical interactions of Li-O and S-Ni. c CV curves of the HEMO-1 and KB cathodes at a scan rate of 0.1 mV s−1. d Rate capability of HEMO-1. e Discharge–charge profiles of HEMO-1 and KB at 0.1 C. f CV curves of symmetric cells of HEMO-1@KB carbon and KB carbon electrodes with and without Li2S6. g Cycling performance and CE of HEMO-1 and KB at 0.1 C. h Long-term cycling performance and CE of HEMO-1 and KB at 0.5 C. (bh) Reproduced with permission from Ref. [128]. Copyright © 2019, Elsevier

Fig. 11

Reproduced with permission from Ref. [204]. Copyright © 2019, Elsevier

Fig. 12

(a, b) Reproduced with permission from Ref. [241]. Copyright © 2018, American Chemical Society. c Role of LiTFSI and LiDFTFSI in solid-state Li-S batteries. d Long term cycling stability of Li-S cells with LiDFTFSI/PEO electrolyte at 0.1 C. (c, d) Reproduced with permission from Ref. [242]. Copyright © 2019, Elsevier

Fig. 13

(af) Reproduced with permission from Ref. [269]. Copyright © 2018, Elsevier

Fig. 14

Reproduced with permission from Ref. [280]. Copyright © 2015, Elsevier. b Suppression mechanism of polysulfides with carbon fiber. Reproduced with permission from Ref. [290]. Copyright © 2016, Elsevier. c Insertion of CNF/PVDF composite member separator. Reproduced with permission from Ref. [292]. Copyright © 2016, Elsevier. d Schematic diagram of sulfur/nitrogen dually doped graphene interlayer. Reproduced with permission from Ref. [293]. Copyright © 2016, Royal Society of Chemistry. e RGO film as inhabitant of polysulfide shuttle. Reproduced with permission from Ref. [291]. Copyright © 2013, Elsevier. f Working mechanism of TiO2/graphene interlayer. Reproduced with permission from Ref. [100]. Copyright © 2015, WILEY-VCH. g Illustration of MWCNTs as efficient separator. Reproduced with permission from Ref. [292]. Copyright © 2015, American Chemical Society. h Encapsulation of polysulfide phenomenon. Reproduced with permission from Ref. [295]. Copyright © 2015, Elsevier. i Polysulfide reduction with CoS2/carbon paper interlayer. Reproduced with permission from Ref. [293]. Copyright © 2016, Elsevier

Fig. 15

(ad) Reproduced with permission from Ref. [317]. Copyright © 2016, Macmillan Publisher Limited. e Schematic illustration of the MOF-based separator and pristine separator in Li-S batteries. f Schematic diagram of a flexible Li-S pouch cell with an MOF@PVDF-HFP separator and its electrochemical performance at a high sulfur loading amount. (e, f) Reproduced with permission from Ref. [319]. Copyright © 2018, WILEY-VCH

Fig. 16

Reproduced with permission from Ref. [325]. Copyright © 2019, American Chemical Society. b Cycling performance of the MoN/graphene coated separator at 0.1 C and 1.0 C with sulfur loadings of 7 and 1.2 mg cm−2. Reproduced with permission from Ref. [324]. Copyright © 2019, WILEY-VCH

Fig. 17

(a, b) Reproduced with permission from Ref. [227]. Copyright © 2018, Elsevier. c Molecular structures of DME, MBE, DPE, DOL, MTBE, and DIPE, and photographs of concentrated solution of Li2S8 in DME:DOL = 1:1, MBE, MTBE, DPE and DIPE. d Initial discharge profiles and cycling performance comparison in different electrolytes. (c, d) Reproduced with permission from Ref. [342]. Copyright © 2018, American Chemical Society

Fig. 18

(a, b) Reproduced with permission from Ref. [348]. Copyright © 2018, WILEY-VCH. c Cyclic performance of the S/CNT cathodes with and without NH4TFSI additive in the electrolyte under the E/S ratio of 5. Reproduced with permission from Ref. [350]. Copyright © 2018, WILEY-VCH

Fig. 19

(a, b) Reproduced with permission from Ref. [380]. Copyright © 2020, Elsevier. c Cycling performances of Li-S batteries with pristine Li and Sb-Li anodes at 1.0 C and with high areal mass loadings of CNTs/S cathodes (2.8 and 4.8 mgsulfur cm−2) cycled at 0.1 C. Reproduced with permission from Ref. [381]. Copyright © 2019, American Chemical Society

Fig. 20

Reproduced with permission from Ref. [411]. Copyright © 2020, Elsevier

Fig. 21

(ac) Reproduced with permission from Ref. [427]. Copyright © 2019, Elsevier. d A 3D-PC structure corresponding to the predesigned pattern and bracelet battery on wrist. e Thermogravimetric analysis curve of the 3D-PC and rate performance with a sulfur loading of 9.8 mg cm−2 at 0.1–2.0 C. f Cycling performance of Li-S cells assembled using 3D-PC with a sulfur loading of 10.2 mg cm−2 at 0.2 C. (df) Reproduced with permission from Ref. [428]. Copyright © 2020, WILEY-VCH

Fig. 22

Reproduced with permission from Ref. [430]. Copyright © 2018, Royal Society of Chemistry. b Schematic diagram of the process of 3D-printing solid electrolyte structures. c Schematic diagram of Li-filled pores between 3D-printed LLZ grids in a stacked-array pattern on LLZ substrate. The cross-sectional SEM image of 3D-printed LLZ|Li metal interface (red line). DC cycling of a Li|3D-printed LLZ|Li metal cell at varying current densities. Each plating/stripping cycle was 1 h long. (b, c) Reproduced with permission from Ref. [431]. Copyright © 2018, WILEY-VCH

Fig. 23

Copyright © 2020, Elsevier. c Schematic illustration of the fabrication process and Li plating process on the Cu foil and 3D carbon host. d Coulombic efficiency evaluation of 3DP-NC and bare Cu foil at different current densities and plating capacities. Galvanostatic cycling profiles of symmetric cells using the Li@3DP-NC, Li@Cu foil and bare Li foil electrodes at the current rate of 10 mA cm−2 and a limited capacity of 2 mAh cm−2. (c, d) Reproduced with permission from Ref. [434]. Copyright © 2020, Elsevier

Similar content being viewed by others

Abbreviations

ABF-STEM:

Annular bright-field scanning transmission electron microscopy

Al-TPA:

Aluminum terephthalic acid

AM:

Additive manufacturing

BPSO:

Bi-grafted polysiloxane

BTFE:

Bis(2,2,2-trifluoroethyl) ether

CA:

Cellulose acetate

CE:

Coulombic efficiency

CMC:

Carboxymethylcellulose

CNF:

Carbon nanofiber

CNS:

Carbon nanosphere

CNT:

Carbon nanotube

COSMO-RS:

Conductor like screening model for real solvents

C-PDA:

Carbonized polydopamine

CPE:

Composite polymer electrolyte

CVD:

Chemical vapor deposition

DFT:

Density functional theory

DIPE:

Diisopropyl ether

DIW:

Direct ink writing

DME:

1,2-Dimethoxyethane

DN:

Donor number

DOL:

1,3-Dioxolane

DPE:

Dipropyl ether

EMITFSI:

1-Ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)-imide

ETFE:

Ethyl 1,1,2,2-tetrafluoroethyl ether

FDM:

Fused deposition molding

FLG:

Few-layer graphene

G4CMP:

4-Carbomethoxy pyrrolidone

GDC:

Galvanostatic discharge/charge

GG:

Guar gum

GO:

Graphene oxide

HC:

Hard carbon

HCF:

Hollow carbon fiber

HDI:

Hexamethylene diisocyanate

HEMO:

High-entropy metal oxide

HFE:

Hydrofluoroether

HFP:

Hexafluoropropylene

HRTEM:

High-resolution transmission electron microscopy

IJP:

Inkjet printing

IL:

Ionic liquid

LAGP:

Lithium aluminum germanium phosphate, Li1.5Al0.5Ge1.5(PO4)3

LATP:

Lithium aluminum titanium phosphate, Li1.5Al0.5Ti1.5(PO4)3

LED:

Light-emitting diode

LIB:

Lithium-ion battery

LiDFTFSI:

Lithium (difluoromethanesulfonyl)-(trifluoro-methanesulfonyl) imide

LiF:

Lithium fluoride

LIFSI:

Lithium bis(fluorosulfonyl)imide

LiFTFSI:

Lithium (fluorosulfonyl)-(trifluoromethanesulfonyl)imide

Li(G4)-Ntf2:

Lithium tetraglyme bis(trifluoromethylsulfonyl)imide

Li(G4)-TFSA:

Lithium tetraglyme bis(trifluoromethanesulfonyl)amide

LiOH:

Lithium hydroxide

LiOTf:

Lithium trifluoromethanesulfonate

LiPAACA:

Lithium poly(acryloyl-6-aminocaproic acid)

LiPS:

Lithium polysulfide

Li-S:

Lithium-sulfur

LISICON:

Lithium superionic conductor

LiTFSA:

Lithium bis(trifluoromethanesulfonyl)amide

LiTFSI:

Lithium bis(trifluoromethanesulfonyl)imide

LLZO:

Lithium lanthanum zirconium oxide, Li7La3Zr2O12

LLZTO:

Ta-doped lithium lanthanum zirconium oxide, Li6.4La3Zr1.4Ta0.6O12

LOM:

Laminated object manufacturing

LTO:

Lithium titanium oxide, Li4Ti5O12

MBE:

Methyl butyl ether

MOFs:

Metal-organic frameworks

MoN:

Molybdenum nitride

MoP:

Molybdenum phosphide

MPC:

Microporous carbon

MTBE:

Methyl tert-butyl ether

MWCNT:

Multi-walled carbon nanotube

NASICON:

Sodium superionic conductor

NCA:

Layered lithium metal oxides (nickel, cobalt, aluminum)

N-FLG:

Nitrogen-doped few-layer graphene

OFE:

1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether

ONPCG:

Oxygen and nitrogen codoped porous carbon granules

P13-TFSA:

N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)amide

PAA:

Polyacrylic acid

PAMAM:

Poly(amidoamine)

PAN:

Polyacrylonitrile

PANI:

Polyaniline

PDMS:

Polydimethylsiloxane

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEI:

Polyethyleneimine

PEGDME:

Poly(ethylene glycol) dimethyl ether

PEO:

Poly(ethylene oxide)

PFM:

Poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

PP13-TFSI:

N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide

PPy:

Polypyrrole

PQ:

Polyquaternium

PTFE:

Polytetrafluoro ethylene

PU:

Polyurethane

PVB:

Polyvinyl butyral

PVDF:

Polyvinylidene fluoride

PVP:

Polyvinylpyrollidone

Pyr1,201TFSI:

N-Methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide

RCF:

Rimous copper foam

rGO:

Reduced graphene oxide

RTIL:

Room temperature ionic liquid

SBR:

Styrene and butadiene rubber

SCG:

SEI-coated graphene

SEI:

Solid electrolyte interphase

SEM:

Scanning electron microscopy

SLA:

Stereolithography

SLM:

Selective laser melting

SLMP:

Stabilized lithium metal powder

SLS:

Selective laser sintering

SPE:

Solid polymer electrolyte

SP-PAA:

Soy protein and polyacrylic acid

STEM:

Scanning transmission electron microscopy

TAED:

Triethylene glycol dimethyl ether

TEGDME:

Tetra(ethylene glycol)dimethyl ether

TEM:

Transmission electron microscopy

TFEE:

1,2-(1,1,2,2-Tetrafluoroethoxy) ethane

TFEG:

2,2,2-Trifluoroethyl methyl ether ethylene glycol

TFETFE:

1,1,2,2-Tetra-fluoro-1-(2,2,2-trifluoroethoxy) ethane

THF:

Tetrahydrofuran

TiN:

Titanium nitride

TMS:

Tetra-methylene sulfone

TTE:

1,1,2,2-Tetra-fluoroethyl 2,2,3,3-tetrafluoropropyl ether

UGF:

Ultrathin graphite foam

VN:

Vanadium nitride

XANES:

X-ray absorption near-edge spectroscopy

XG:

Xanthan gum

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. Smalley, R.E.: Future global energy prosperity: the terawatt challenge. MRS Bull. 30, 412–417 (2005). https://doi.org/10.1557/mrs2005.124

    Article  Google Scholar 

  2. Wang, Q.S., Ping, P., Zhao, X.J., et al.: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038

    Article  CAS  ADS  Google Scholar 

  3. Sun, C.L., Wang, Y.J., Gu, H., et al.: Interfacial coupled design of epitaxial graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 77, 105092 (2020). https://doi.org/10.1016/j.nanoen.2020.105092

    Article  CAS  Google Scholar 

  4. Zhou, Z.F., Li, G.C., Zhang, J.J., et al.: Wide working temperature range rechargeable lithium-sulfur batteries: a critical review. Adv. Funct. Mater. 31, 2107136 (2021). https://doi.org/10.1002/adfm.202107136

    Article  CAS  Google Scholar 

  5. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Song, M.K., Park, S., Alamgir, F.M., et al.: Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203–252 (2011). https://doi.org/10.1016/j.mser.2011.06.001

    Article  CAS  Google Scholar 

  7. Zhao, B., Song, D.Y., Ding, Y.W., et al.: Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high performance lithium/sodium-ion batteries. Electrochim. Acta 354, 136730 (2020). https://doi.org/10.1016/j.electacta.2020.136730

    Article  CAS  Google Scholar 

  8. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Bock, D.C., Marschilok, A.C., Takeuchi, K.J., et al.: Batteries used to power implantable biomedical devices. Electrochim. Acta 84, 155–164 (2012). https://doi.org/10.1016/j.electacta.2012.03.057

    Article  CAS  Google Scholar 

  10. Nagata, M., Saraswat, A., Nakahara, H., et al.: Miniature pin-type lithium batteries for medical applications. J. Power Sources 146, 762–765 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.156

    Article  CAS  ADS  Google Scholar 

  11. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011). https://doi.org/10.1038/nmat3191

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Zhang, S.S.: Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102

    Article  CAS  Google Scholar 

  13. Xu, J.Q., Zhou, K., Chen, F., et al.: Natural integrated carbon architecture for rechargeable lithium-sulfur batteries. ACS Sustain. Chem. Eng. 4, 666–670 (2016). https://doi.org/10.1021/acssuschemeng.5b01258

    Article  CAS  Google Scholar 

  14. Huang, J.Q., Zhuang, T.Z., Zhang, Q., et al.: Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano 9, 3002–3011 (2015). https://doi.org/10.1021/nn507178a

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Y., Zheng, G.Y., Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013). https://doi.org/10.1039/c2cs35256g

    Article  CAS  PubMed  Google Scholar 

  16. Feng, S., Fu, Z.H., Chen, X., et al.: A review on theoretical models for lithium-sulfur battery cathodes. InfoMat 4, e12304 (2022). https://doi.org/10.1002/inf2.12304

    Article  CAS  Google Scholar 

  17. Mikhaylik, Y.V., Akridge, J.R.: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969 (2004). https://doi.org/10.1149/1.1806394

    Article  CAS  Google Scholar 

  18. Ma, G.Q., Wen, Z.Y., Wu, M.F., et al.: A lithium anode protection guided highly-stable lithium-sulfur battery. Chem. Commun. (Camb.) 50, 14209–14212 (2014). https://doi.org/10.1039/c4cc05535g

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X.Y., Chen, K., Sun, Z.H., et al.: Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries. Energy Environ. Sci. 13, 1076–1095 (2020). https://doi.org/10.1039/C9EE03848E

    Article  CAS  Google Scholar 

  20. Fang, R.P., Zhao, S.Y., Sun, Z.H., et al.: More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017). https://doi.org/10.1002/adma.201606823

    Article  CAS  Google Scholar 

  21. Fan, X.J., Sun, W.W., Meng, F.C., et al.: Advanced chemical strategies for lithium-sulfur batteries: a review. Green Energy Environ. 3, 2–19 (2018). https://doi.org/10.1016/j.gee.2017.08.002

    Article  Google Scholar 

  22. Ji, X.L., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Song, X., Gao, T., Wang, S.Q., et al.: Free-standing sulfur host based on titanium-dioxide-modified porous-carbon nanofibers for lithium-sulfur batteries. J. Power Sources 356, 172–180 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.093

    Article  CAS  ADS  Google Scholar 

  24. Li, Z., Zhang, J.T., Lou, X.W.: Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 12886–12890 (2015). https://doi.org/10.1002/anie.201506972

    Article  CAS  Google Scholar 

  25. Chen, W., Lei, T.Y., Lv, W.Q., et al.: Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery. Adv. Mater. 30, 1804084 (2018). https://doi.org/10.1002/adma.201804084

    Article  CAS  Google Scholar 

  26. Majumder, S., Shao, M.H., Deng, Y.F., et al.: Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries. J. Power Sources 431, 93–104 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.045

    Article  CAS  ADS  Google Scholar 

  27. Majumder, S., Shao, M.H., Deng, Y.F., et al.: Two dimensional WS2/C nanosheets as a polysulfides immobilizer for high performance lithium-sulfur batteries. J. Electrochem. Soc. 166, A5386–A5395 (2019). https://doi.org/10.1149/2.0501903jes

    Article  CAS  Google Scholar 

  28. Yan, R.Y., Oschatz, M., Wu, F.X.: Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon 161, 162–168 (2020). https://doi.org/10.1016/j.carbon.2020.01.046

    Article  CAS  Google Scholar 

  29. Ji, L.W., Rao, M.M., Zheng, H.M., et al.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–18525 (2011). https://doi.org/10.1021/ja206955k

    Article  CAS  PubMed  Google Scholar 

  30. Wang, L., Song, Y.H., Zhang, B.H., et al.: Spherical metal oxides with high tap density as sulfur host to enhance cathode volumetric capacity for lithium-sulfur battery. ACS Appl. Mater. Interfaces 12, 5909–5919 (2020). https://doi.org/10.1021/acsami.9b20111

    Article  CAS  PubMed  Google Scholar 

  31. Chang, C.H., Chung, S.H., Manthiram, A.: Transforming waste newspapers into nitrogen-doped conducting interlayers for advanced Li-S batteries. Sustain. Energy Fuels 1, 444–449 (2017). https://doi.org/10.1039/C7SE00014F

    Article  CAS  Google Scholar 

  32. Lee, C.L., Kim, I.D.: A hierarchical carbon nanotube-loaded glass-filter composite paper interlayer with outstanding electrolyte uptake properties for high-performance lithium-sulphur batteries. Nanoscale 7, 10362–10367 (2015). https://doi.org/10.1039/c5nr02637g

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Ren, W.C., Ma, W., Zhang, S.F., et al.: Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019). https://doi.org/10.1016/j.ensm.2019.02.022

    Article  Google Scholar 

  34. Wang, L.L., Ye, Y.S., Chen, N., et al.: Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28, 1800919 (2018). https://doi.org/10.1002/adfm.201800919

    Article  CAS  Google Scholar 

  35. Li, Z., Wu, H.B., Lou, X.W.: Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 9, 3061–3070 (2016). https://doi.org/10.1039/C6EE02364A

    Article  CAS  Google Scholar 

  36. Li, Y.Y., Li, X.F., Hao, Y.C., et al.: β-FeOOH interlayer with abundant oxygen vacancy toward boosting catalytic effect for lithium sulfur batteries. Front. Chem. 8, 309 (2020). https://doi.org/10.3389/fchem.2020.00309

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Chen, Y., Wang, T.Y., Tian, H.J., et al.: Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv. Mater. 33, 2003666 (2021). https://doi.org/10.1002/adma.202003666

  38. Sun, J.G., Wang, T., Gao, Y.L., et al.: Will lithium-sulfur batteries be the next beyond-lithium ion batteries and even much better? InfoMat 4, e12359 (2022). https://doi.org/10.1002/inf2.12359

  39. Pang, Q., Kwok, C.Y., Kundu, D.P., et al.: Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 3, 136–148 (2019). https://doi.org/10.1016/j.joule.2018.09.024

    Article  CAS  Google Scholar 

  40. Li, F., Liu, Q.H., Hu, J.W., et al.: Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Nanoscale 11, 15418–15439 (2019). https://doi.org/10.1039/c9nr04415a

    Article  CAS  PubMed  Google Scholar 

  41. Xie, Y.P., Fang, L., Cheng, H.W., et al.: Biological cell derived N-doped hollow porous carbon microspheres for lithium-sulfur batteries. J. Mater. Chem. A 4, 15612–15620 (2016). https://doi.org/10.1039/C6TA06164H

    Article  CAS  Google Scholar 

  42. Xu, Z.L., Kim, J.K., Kang, K.: Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19, 84–107 (2018). https://doi.org/10.1016/j.nantod.2018.02.006

    Article  CAS  Google Scholar 

  43. Xie, C., Shan, H., Song, X.X., et al.: Flexible S@C-CNTs cathodes with robust mechanical strength via blade-coating for lithium-sulfur batteries. J. Colloid Interface Sci. 592, 448–454 (2021). https://doi.org/10.1016/j.jcis.2021.02.065

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Liang, J., Sun, Z.H., Li, F., et al.: Carbon materials for Li-S batteries: functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016). https://doi.org/10.1016/j.ensm.2015.09.007

    Article  Google Scholar 

  45. Borchardt, L., Oschatz, M., Kaskel, S.: Carbon materials for lithium sulfur batteries: ten critical questions. Chem. A Eur. J. 22, 7324–7351 (2016). https://doi.org/10.1002/chem.201600040

    Article  CAS  Google Scholar 

  46. Zhang, B., Kang, F.Y., Tarascon, J.M., et al.: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380 (2016). https://doi.org/10.1016/j.pmatsci.2015.08.002

    Article  CAS  Google Scholar 

  47. Xin, S., Gu, L., Zhao, N.H., et al.: Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012). https://doi.org/10.1021/ja308170k

    Article  CAS  PubMed  Google Scholar 

  48. Guo, Z.J., Zhang, B., Li, D.J., et al.: A mixed microporous/low-range mesoporous composite with high sulfur loading from hierarchically-structured carbon for lithium sulfur batteries. Electrochim. Acta 230, 181–188 (2017). https://doi.org/10.1016/j.electacta.2017.01.174

    Article  CAS  Google Scholar 

  49. Li, S.S., Jin, B., Zhai, X.J., et al.: Review of carbon materials for lithium-sulfur batteries. ChemistrySelect 3, 2245–2260 (2018). https://doi.org/10.1002/slct.201703112

    Article  CAS  Google Scholar 

  50. Yang, K., Gao, Q., Tan, Y., et al.: Microporous carbon derived from Apricot shell as cathode material for lithium-sulfur battery. Microporous Mesoporous Mater. 204, 235–241 (2015). https://doi.org/10.1016/j.micromeso.2014.12.003

    Article  CAS  Google Scholar 

  51. Gu, S.N., Bai, Z.W., Majumder, S., et al.: In situ grown α-CoS/Co heterostructures on nitrogen doped carbon polyhedra enabling the trapping and reaction-intensification of polysulfides towards high performance lithium sulfur batteries. Nanoscale 11, 20579–20588 (2019). https://doi.org/10.1039/c9nr07249g

    Article  CAS  PubMed  Google Scholar 

  52. Zhao, Z.X., Wang, S., Liang, R., et al.: Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries. J. Mater. Chem. A 2, 13509–13512 (2014). https://doi.org/10.1039/C4TA01241K

    Article  CAS  Google Scholar 

  53. He, B., Li, W.C., Yang, C., et al.: Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach. ACS Nano 10, 1633–1639 (2016). https://doi.org/10.1021/acsnano.5b07340

    Article  CAS  PubMed  Google Scholar 

  54. Niu, S.Z., Zhou, G.M., Lv, W., et al.: Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries. Carbon 109, 1–6 (2016). https://doi.org/10.1016/j.carbon.2016.07.062

    Article  CAS  Google Scholar 

  55. Yeon, J.S., Park, S.H., Suk, J., et al.: Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode. Chem. Eng. J. 382, 122946 (2020). https://doi.org/10.1016/j.cej.2019.122946

    Article  CAS  Google Scholar 

  56. Tan, J.C., Li, D., Liu, Y.Q., et al.: A self-supported 3D aerogel network lithium-sulfur battery cathode: sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. J. Mater. Chem. A 8, 7980–7990 (2020). https://doi.org/10.1039/D0TA00284D

    Article  CAS  Google Scholar 

  57. Rehman, S., Gu, X.X., Khan, K., et al.: 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries. Adv. Energy Mater. 6, 1502518 (2016). https://doi.org/10.1002/aenm.201502518

    Article  CAS  Google Scholar 

  58. Wang, S., Zhao, Z.X., Xu, H., et al.: Sulfur impregnated in tunable porous N-doped carbon as sulfur cathode: effect of pore size distribution. Electrochim. Acta 173, 282–289 (2015). https://doi.org/10.1016/j.electacta.2015.05.030

    Article  CAS  Google Scholar 

  59. Sun, Z.J., Xiao, M., Wang, S.J., et al.: Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium-sulfur battery application. J. Power Sources 285, 478–484 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.138

    Article  CAS  ADS  Google Scholar 

  60. Wang, S.X., Liu, X.Y., Zou, K.X., et al.: Toward a practical Li-S battery enabled by synergistic confinement of a nitrogen-enriched porous carbon as a multifunctional interlayer and sulfur-host material. J. Electroanal. Chem. 858, 113797 (2020). https://doi.org/10.1016/j.jelechem.2019.113797

    Article  CAS  Google Scholar 

  61. Zhou, G.M., Zhao, Y.B., Manthiram, A.: Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv. Energy Mater. 5, 1402263 (2015). https://doi.org/10.1002/aenm.201402263

    Article  CAS  Google Scholar 

  62. Nersisyan, H.H., Joo, S.H., Yoo, B.U., et al.: Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery. Carbon 103, 255–262 (2016). https://doi.org/10.1016/j.carbon.2016.03.022

    Article  CAS  Google Scholar 

  63. Wu, F., Li, J., Su, Y.F., et al.: Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries. Nano Lett. 16, 5488–5494 (2016). https://doi.org/10.1021/acs.nanolett.6b01981

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Xu, C.M., Wu, Y.S., Zhao, X.Y., et al.: Sulfur/three-dimensional graphene composite for high performance lithium-sulfur batteries. J. Power Sources 275, 22–25 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.007

    Article  CAS  ADS  Google Scholar 

  65. Li, L., Zhou, G.M., Yin, L.C., et al.: Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries. Carbon 108, 120–126 (2016). https://doi.org/10.1016/j.carbon.2016.07.008

    Article  CAS  Google Scholar 

  66. Tang, C., Li, B.Q., Zhang, Q., et al.: CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 26, 577–585 (2016). https://doi.org/10.1002/adfm.201503726

    Article  CAS  Google Scholar 

  67. Li, H., Wen, X.Z., Shao, F., et al.: Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium-sulfur batteries. Chem. Eng. J. 412, 128562 (2021). https://doi.org/10.1016/j.cej.2021.128562

    Article  CAS  Google Scholar 

  68. Zhang, X.Q., He, B., Li, W.C., et al.: Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 11, 1238–1246 (2018)

    Article  CAS  ADS  Google Scholar 

  69. Deng, W.N., Hu, A.P., Chen, X.H., et al.: Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries. J. Power Sources 322, 138–146 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.024

    Article  CAS  ADS  Google Scholar 

  70. Gulzar, U., Li, T., Bai, X., et al.: Nitrogen-doped single-walled carbon nanohorns as a cost-effective carbon host toward high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 10, 5551–5559 (2018). https://doi.org/10.1021/acsami.7b17602

    Article  CAS  PubMed  Google Scholar 

  71. Wang, H.Q., Zhang, C.F., Chen, Z.X., et al.: Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries. Carbon 81, 782–787 (2015). https://doi.org/10.1016/j.carbon.2014.10.024

    Article  CAS  Google Scholar 

  72. Wu, F., Shi, L.L., Mu, D.B., et al.: A hierarchical carbon fiber/sulfur composite as cathode material for Li-S batteries. Carbon 86, 146–155 (2015). https://doi.org/10.1016/j.carbon.2015.01.026

    Article  CAS  Google Scholar 

  73. He, B., Li, W.C., Chen, Z.Y., et al.: Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity. Nano Res. 14, 1273–1279 (2021)

    Article  CAS  ADS  Google Scholar 

  74. Li, G.X., Sun, J.H., Hou, W.P., et al.: Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 7, 10601 (2016). https://doi.org/10.1038/ncomms10601

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Zhang, Y.Z., Zong, X.L., Zhan, L., et al.: Double-shelled hollow carbon sphere with microporous outer shell towards high performance lithium-sulfur battery. Electrochim. Acta 284, 89–97 (2018). https://doi.org/10.1016/j.electacta.2018.05.144

    Article  CAS  Google Scholar 

  76. Sahore, R., Levin, B.D.A., Pan, M., et al.: Design principles for optimum performance of porous carbons in lithium-sulfur batteries. Adv. Energy Mater. 6, 1600134 (2016). https://doi.org/10.1002/aenm.201600134

    Article  CAS  Google Scholar 

  77. Mi, K., Jiang, Y., Feng, J.K., et al.: Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries. Adv. Funct. Mater. 26, 1571–1579 (2016). https://doi.org/10.1002/adfm.201504835

    Article  CAS  Google Scholar 

  78. Li, F.Q., Qin, F.R., Zhang, K., et al.: Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading. J. Power Sources 362, 160–167 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.038

    Article  CAS  ADS  Google Scholar 

  79. Sevilla, M., Carro-Rodríguez, J., Díez, N., et al.: Straightforward synthesis of sulfur/N,S-codoped carbon cathodes for lithium-sulfur batteries. Sci. Rep. 10, 4866 (2020). https://doi.org/10.1038/s41598-020-61583-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Ai, W., Zhou, W.W., Du, Z.Z., et al.: Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Mater. 6, 112–118 (2017). https://doi.org/10.1016/j.ensm.2016.10.008

    Article  Google Scholar 

  81. Hu, Q.Q., Dong, H.Y., Wang, B., et al.: Constructing coral-like hierarchical porous carbon architectures with tailored pore size distribution as sulfur hosts for durable Li-S batteries. Electrochim. Acta 377, 138063 (2021). https://doi.org/10.1016/j.electacta.2021.138063

    Article  CAS  Google Scholar 

  82. Helen, M., Reddy, M.A., Diemant, T., et al.: Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. Sci. Rep. 5, 12146 (2015). https://doi.org/10.1038/srep12146

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Xu, Y.H., Wen, Y., Zhu, Y.J., et al.: Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Adv. Funct. Mater. 25, 4312–4320 (2015). https://doi.org/10.1002/adfm.201500983

    Article  CAS  Google Scholar 

  84. Li, X.L., Cao, Y.L., Qi, W., et al.: Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J. Mater. Chem. 21, 16603–16610 (2011). https://doi.org/10.1039/C1JM12979A

    Article  CAS  Google Scholar 

  85. Zhou, W.D., Wang, C.M., Zhang, Q.L., et al.: Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 5, 1401752 (2015). https://doi.org/10.1002/aenm.201401752

    Article  CAS  Google Scholar 

  86. Hippauf, F., Nickel, W., Hao, G.P., et al.: The importance of pore size and surface polarity for polysulfide adsorption in lithium sulfur batteries. Adv. Mater. Interfaces 3, 1600508 (2016). https://doi.org/10.1002/admi.201600508

    Article  CAS  Google Scholar 

  87. Wang, D.X., Fu, A.P., Li, H.L., et al.: Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries. J. Power Sources 285, 469–477 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.135

    Article  CAS  ADS  Google Scholar 

  88. Sun, L., Wang, D.T., Luo, Y.F., et al.: Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano 10, 1300–1308 (2016). https://doi.org/10.1021/acsnano.5b06675

    Article  CAS  PubMed  Google Scholar 

  89. Xin, S., You, Y., Li, H.Q., et al.: Graphene sandwiched by sulfur-confined mesoporous carbon nanosheets: a kinetically stable cathode for Li-S batteries. ACS Appl. Mater. Interfaces 8, 33704–33711 (2016). https://doi.org/10.1021/acsami.6b12142

    Article  CAS  PubMed  Google Scholar 

  90. Li, C.X., Xi, Z.C., Guo, D.X., et al.: Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 14, 1701986 (2018). https://doi.org/10.1002/smll.201701986

    Article  CAS  Google Scholar 

  91. Hwang, J.Y., Kim, H.M., Lee, S.K., et al.: High-energy, high-rate, lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv. Energy Mater. 6, 1501480 (2016). https://doi.org/10.1002/aenm.201501480

    Article  CAS  Google Scholar 

  92. Ni, L.B., Wu, Z., Zhao, G.J., et al.: Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries. Small 13, 1603466 (2017). https://doi.org/10.1002/smll.201603466

    Article  CAS  Google Scholar 

  93. Liang, X., Hart, C., Pang, Q., et al.: A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682

    Article  PubMed  ADS  Google Scholar 

  94. Fan, Q., Liu, W., Weng, Z., et al.: Ternary hybrid material for high-performance lithium-sulfur battery. J. Am. Chem. Soc. 137, 12946–12953 (2015). https://doi.org/10.1021/jacs.5b07071

    Article  CAS  PubMed  Google Scholar 

  95. Hu, N.N., Lv, X.S., Dai, Y., et al.: SnO2/reduced graphene oxide interlayer mitigating the shuttle effect of Li-S batteries. ACS Appl. Mater. Interfaces 10, 18665–18674 (2018). https://doi.org/10.1021/acsami.8b03255

    Article  CAS  PubMed  Google Scholar 

  96. Ponraj, R., Kannan, A.G., Ahn, J.H., et al.: Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide. ACS Appl. Mater. Interfaces 8, 4000–4006 (2016). https://doi.org/10.1021/acsami.5b11327

    Article  CAS  PubMed  Google Scholar 

  97. Gu, X.X., Tong, C.J., Wen, B., et al.: Ball-milling synthesis of ZnO@sulphur/carbon nanotubes and Ni(OH)2@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries. Electrochim. Acta 196, 369–376 (2016). https://doi.org/10.1016/j.electacta.2016.03.018

    Article  CAS  Google Scholar 

  98. Abualela, S., Lv, X.X., Hu, Y., et al.: NiO nanosheets grown on carbon cloth as mesoporous cathode for high-performance lithium-sulfur battery. Mater. Lett. 268, 127622 (2020). https://doi.org/10.1016/j.matlet.2020.127622

    Article  CAS  Google Scholar 

  99. Liang, X., Nazar, L.F.: In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 10, 4192–4198 (2016). https://doi.org/10.1021/acsnano.5b07458

    Article  CAS  PubMed  Google Scholar 

  100. Xiao, Z.B., Yang, Z., Wang, L., et al.: A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 27, 2891–2898 (2015). https://doi.org/10.1002/adma.201405637

    Article  CAS  PubMed  Google Scholar 

  101. Wei Seh, Z., Li, W.Y., Cha, J.J., et al.: Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1–6 (2013). https://doi.org/10.1038/ncomms2327

    Article  CAS  ADS  Google Scholar 

  102. Ghosh, A., Manjunatha, R., Kumar, R., et al.: A facile bottom-up approach to construct hybrid flexible cathode scaffold for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 8, 33775–33785 (2016). https://doi.org/10.1021/acsami.6b11180

    Article  CAS  PubMed  Google Scholar 

  103. Guo, J.L., Zhang, X.L., Du, X.Y., et al.: A Mn3O4 nano-wall array based binder-free cathode for high performance lithium-sulfur batteries. J. Mater. Chem. A 5, 6447–6454 (2017). https://doi.org/10.1039/C7TA00475C

    Article  CAS  Google Scholar 

  104. Tao, Y.Q., Wei, Y.J., Liu, Y., et al.: Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ. Sci. 9, 3230–3239 (2016). https://doi.org/10.1039/C6EE01662F

    Article  CAS  Google Scholar 

  105. Lee, J.S., Jun, J., Jang, J., et al.: Sulfur-immobilized, activated porous carbon nanotube composite based cathodes for lithium-sulfur batteries. Small 13, 1602984 (2017). https://doi.org/10.1002/smll.201602984

    Article  CAS  Google Scholar 

  106. Zhang, D.A., Wang, Q., Wang, Q., et al.: High capacity and cyclability of hierarchical MoS2/SnO2 nanocomposites as the cathode of lithium-sulfur battery. Electrochim. Acta 173, 476–482 (2015). https://doi.org/10.1016/j.electacta.2015.05.086

    Article  CAS  Google Scholar 

  107. Zhang, Q.F., Wang, Y.P., Seh, Z.W., et al.: Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 15, 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367

    Article  CAS  PubMed  ADS  Google Scholar 

  108. Dirlam, P.T., Park, J., Simmonds, A.G., et al.: Elemental sulfur and molybdenum disulfide composites for Li-S batteries with long cycle life and high-rate capability. ACS Appl. Mater. Interfaces 8, 13437–13448 (2016). https://doi.org/10.1021/acsami.6b03200

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, S.S., Tran, D.T.: Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulphur batteries. J. Mater. Chem. A 4, 4371–4374 (2016). https://doi.org/10.1039/C6TA01214K

    Article  CAS  Google Scholar 

  110. Zhang, A.Y., Fang, X., Shen, C.F., et al.: A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 9, 3428–3436 (2016)

    Article  CAS  Google Scholar 

  111. Pang, Q., Kundu, D.P., Nazar, L.F.: A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 3, 130–136 (2016). https://doi.org/10.1039/C5MH00246J

    Article  CAS  Google Scholar 

  112. Yuan, Z., Peng, H.J., Hou, T.Z., et al.: Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166

    Article  CAS  PubMed  ADS  Google Scholar 

  113. Li, X.L., Chu, L.B., Wang, Y.Y., et al.: Anchoring function for polysulfide ions of ultrasmall SnS2 in hollow carbon nanospheres for high performance lithium-sulfur batteries. Mater. Sci. Eng. B 205, 46–54 (2016). https://doi.org/10.1016/j.mseb.2015.12.002

    Article  CAS  Google Scholar 

  114. Lu, Y., Li, X.N., Liang, J.W., et al.: A simple melting-diffusing-reacting strategy to fabricate S/NiS2-C for lithium-sulfur batteries. Nanoscale 8, 17616–17622 (2016). https://doi.org/10.1039/c6nr05626a

    Article  CAS  PubMed  Google Scholar 

  115. Sun, K., Su, D., Zhang, Q., et al.: Interaction of CuS and sulfur in Li-S battery system. J. Electrochem. Soc. 162, A2834–A2839 (2015). https://doi.org/10.1149/2.1021514jes

    Article  CAS  Google Scholar 

  116. Bugga, R.V., Jones, S.C., Pasalic, J., et al.: Metal sulfide-blended sulfur cathodes in high energy lithium-sulfur cells. J. Electrochem. Soc. 164, A265–A276 (2016). https://doi.org/10.1149/2.0941702jes

    Article  CAS  Google Scholar 

  117. Liang, X., Rangom, Y., Kwok, C.Y., et al.: Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 29, 1603040 (2017). https://doi.org/10.1002/adma.201603040

    Article  CAS  Google Scholar 

  118. Su, D.W., Cortie, M., Wang, G.X.: Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 7, 1602014 (2017). https://doi.org/10.1002/aenm.201602014

    Article  CAS  ADS  Google Scholar 

  119. He, J.R., Hartmann, G., Lee, M., et al.: Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 12, 344–350 (2019). https://doi.org/10.1039/C8EE03252A

    Article  CAS  Google Scholar 

  120. Liu, A.M., Liang, X.Y., Ren, X.F., et al.: Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: potential high-performance electrodes. Electrochem. Energy Rev. 5, 112–144 (2022)

    Article  CAS  Google Scholar 

  121. Wu, Y.L., Zhu, X.R., Li, P.R., et al.: Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy 59, 636–643 (2019). https://doi.org/10.1016/j.nanoen.2019.03.015

    Article  CAS  Google Scholar 

  122. Cui, Z.M., Zu, C.X., Zhou, W.D., et al.: Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28, 6926–6931 (2016). https://doi.org/10.1002/adma.201601382

    Article  CAS  PubMed  Google Scholar 

  123. Chen, Y., Zhang, W.X., Zhou, D., et al.: Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 13, 4731–4741 (2019). https://doi.org/10.1021/acsnano.9b01079

    Article  CAS  PubMed  Google Scholar 

  124. Rost, C.M., Sachet, E., Borman, T., et al.: Entropy-stabilized oxides. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms9485

    Article  CAS  Google Scholar 

  125. Raza, H., Cheng, J.Y., Lin, C., et al.: High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 5, e12324 (2023). https://doi.org/10.1002/eom2.12324

    Article  CAS  Google Scholar 

  126. Raza, H., Cheng, J.Y., Chen, G.H., et al.: Low-temperature calcination of metal-organic frameworks (MOFs) to derive the high entropy stabilized oxide for high performance lithium-sulfur batteries. ECS Meet. Abstr. (2022). https://doi.org/10.1149/MA2022-0162432mtgabs

    Article  Google Scholar 

  127. Kong, L., Chen, X., Li, B.Q., et al.: A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 30, 1705219 (2018). https://doi.org/10.1002/adma.201705219

    Article  CAS  Google Scholar 

  128. Zheng, Y.N., Yi, Y.K., Fan, M.H., et al.: A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 23, 678–683 (2019). https://doi.org/10.1016/j.ensm.2019.02.030

    Article  Google Scholar 

  129. Liu, G., Zeng, Q., Fan, Z.Y., et al.: Boosting sulfur catalytic kinetics by defect engineering of vanadium disulfide for high-performance lithium-sulfur batteries. Chem. Eng. J. 448, 137683 (2022). https://doi.org/10.1016/j.cej.2022.137683

    Article  CAS  Google Scholar 

  130. Jiao, L., Li, H., Zhang, C., et al.: Molecular engineering of sulfur-providing materials for optimized sulfur conversion in Li-S chemistry. EcoMat 4, e12262 (2022). https://doi.org/10.1002/eom2.12262

    Article  CAS  Google Scholar 

  131. Wang, L., Hua, W.X., Wan, X., et al.: Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries. Adv. Mater. 34, 2110279 (2022). https://doi.org/10.1002/adma.202110279

    Article  CAS  Google Scholar 

  132. Peng, H.J., Zhang, G., Chen, X., et al.: Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem. 128, 13184–13189 (2016). https://doi.org/10.1002/ange.201605676

    Article  ADS  Google Scholar 

  133. Liu, D.H., Zhang, C., Zhou, G.M., et al.: Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018). https://doi.org/10.1002/advs.433

    Article  Google Scholar 

  134. Wang, L., Hu, Z.H., Wan, X., et al.: Li2S4 anchoring governs the catalytic sulfur reduction on defective SmMn2O5 in lithium-sulfur battery. Adv. Energy Mater. 12, 2200340 (2022). https://doi.org/10.1002/aenm.202200340

    Article  CAS  Google Scholar 

  135. Zhou, J.B., Liu, X.J., Zhu, L.Q., et al.: Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2, 2681–2693 (2018). https://doi.org/10.1016/j.joule.2018.08.010

    Article  CAS  Google Scholar 

  136. Hua, W.X., Li, H., Pei, C., et al.: Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 33, 2101006 (2021). https://doi.org/10.1002/adma.202101006

    Article  CAS  Google Scholar 

  137. Chen, Y., Gao, X.C., Su, D.W., et al.: Accelerating redox kinetics of lithium-sulfur batteries. Trends Chem. 2, 1020–1033 (2020). https://doi.org/10.1016/j.trechm.2020.09.001

    Article  CAS  ADS  Google Scholar 

  138. Babu, G., Ababtain, K., Ng, K.Y., et al.: Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci. Rep. 5, 8763 (2015). https://doi.org/10.1038/srep08763

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  139. Wang, Z.S., Shen, J.D., Ji, S.M., et al.: B, N codoped graphitic nanotubes loaded with Co nanoparticles as superior sulfur host for advanced Li-S batteries. Small 16, 1906634 (2020). https://doi.org/10.1002/smll.201906634

    Article  CAS  Google Scholar 

  140. Hu, S.Y., Yi, M.J., Wu, H., et al.: Ionic-liquid-assisted synthesis of N, F, and B co-doped CoFe2O4−x on multiwalled carbon nanotubes with enriched oxygen vacancies for Li-S batteries. Adv. Funct. Mater. 32, 2111084 (2022). https://doi.org/10.1002/adfm.202111084

    Article  CAS  Google Scholar 

  141. Hou, W.S., Feng, P.L., Guo, X., et al.: Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium-sulfur batteries. Adv. Mater. 34, 2202222 (2022). https://doi.org/10.1002/adma.202202222

    Article  CAS  Google Scholar 

  142. He, J.R., Manthiram, A.: A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 20, 55–70 (2019). https://doi.org/10.1016/j.ensm.2019.04.038

    Article  Google Scholar 

  143. Chen, J.J., Yuan, R.M., Feng, J.M., et al.: Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 27, 2048–2055 (2015). https://doi.org/10.1021/cm5044667

    Article  CAS  Google Scholar 

  144. Pang, Q., Tang, J.T., Huang, H., et al.: A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 27, 6021–6028 (2015). https://doi.org/10.1002/adma.201502467

    Article  CAS  PubMed  Google Scholar 

  145. Li, L., Chen, L., Mukherjee, S., et al.: Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv. Mater. 29, 1602734 (2017). https://doi.org/10.1002/adma.201602734

    Article  CAS  Google Scholar 

  146. Wang, C.L., Sun, L.S., Li, K., et al.: Unravel the catalytic effect of two-dimensional metal sulfides on polysulfide conversions for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 43560–43567 (2020). https://doi.org/10.1021/acsami.0c09567

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, G.D., Wang, S.S., Zeng, X.Q., et al.: Holey amorphous FeCoO-coated black phosphorus for robust polysulfide adsorption and catalytic conversion in lithium-sulfur batteries. J. Mater. Chem. A 10, 11676–11683 (2022). https://doi.org/10.1039/D2TA01215D

    Article  CAS  Google Scholar 

  148. Xue, P., Zhu, K.P., Gong, W.B., et al.: “One stone two birds” design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium-sulfur batteries. Adv. Energy Mater. 12, 2200308 (2022). https://doi.org/10.1002/aenm.202200308

    Article  CAS  Google Scholar 

  149. Zhou, T.H., Lv, W., Li, J., et al.: Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 10, 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A

    Article  CAS  Google Scholar 

  150. Song, Y.Z., Zhao, W., Kong, L., et al.: Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 11, 2620–2630 (2018). https://doi.org/10.1039/C8EE01402G

    Article  CAS  Google Scholar 

  151. Ye, C., Jiao, Y., Jin, H.Y., et al.: 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem. 130, 16945–16949 (2018). https://doi.org/10.1002/ange.201810579

    Article  ADS  Google Scholar 

  152. Zhang, L.L., Liu, D.B., Muhammad, Z., et al.: Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 31, e1903955 (2019). https://doi.org/10.1002/adma.201903955

    Article  CAS  PubMed  Google Scholar 

  153. Li, Y.J., Gao, T.T., Ni, D.Y., et al.: Two birds with one stone: interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries. Adv. Mater. 34, 2107638 (2022). https://doi.org/10.1002/adma.202107638

    Article  CAS  Google Scholar 

  154. Zhang, M., Chen, W., Xue, L.X., et al.: Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 10, 1903008 (2020). https://doi.org/10.1002/aenm.201903008

    Article  CAS  Google Scholar 

  155. Wang, P., Xi, B.J., Zhang, Z., et al.: Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem. Int. Ed. 60, 15563–15571 (2021). https://doi.org/10.1002/anie.202104053

    Article  CAS  ADS  Google Scholar 

  156. Han, Z.Y., Zhao, S.Y., Xiao, J.W., et al.: Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 33, e2105947 (2021). https://doi.org/10.1002/adma.202105947

    Article  CAS  PubMed  Google Scholar 

  157. Liu, K.F., Zhao, H.B., Ye, D.X., et al.: Recent progress in organic polymers-composited sulfur materials as cathodes for lithium-sulfur battery. Chem. Eng. J. 417, 129309 (2021). https://doi.org/10.1016/j.cej.2021.129309

    Article  CAS  Google Scholar 

  158. Xiang, J.W., Guo, Z.Z., Yi, Z.Q., et al.: Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium-sulfur batteries. J. Energy Chem. 49, 161–165 (2020). https://doi.org/10.1016/j.jechem.2020.01.037

    Article  Google Scholar 

  159. Wang, J., Yang, J., Xie, J., et al.: A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002). https://doi.org/10.1002/1521-4095(20020705)14:13/14%3c963:AID-ADMA963%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  160. Yu, X.G., Xie, J.Y., Yang, J., et al.: Lithium storage in conductive sulfur-containing polymers. J. Electroanal. Chem. 573, 121–128 (2004). https://doi.org/10.1016/j.jelechem.2004.07.004

    Article  CAS  Google Scholar 

  161. Zhang, S.: Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 7, 4588–4600 (2014). https://doi.org/10.3390/en7074588

    Article  CAS  Google Scholar 

  162. Wei, S.Y., Ma, L., Hendrickson, K.E., et al.: Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015). https://doi.org/10.1021/jacs.5b08113

    Article  CAS  PubMed  Google Scholar 

  163. Yang, H.J., Chen, J.H., Yang, J., et al.: Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 59, 7306–7318 (2020). https://doi.org/10.1002/anie.201913540

    Article  CAS  Google Scholar 

  164. Chen, X., Peng, L.F., Wang, L.H., et al.: Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping. Nat. Commun. 10, 1021 (2019). https://doi.org/10.1038/s41467-019-08818-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  165. Yin, L.C., Wang, J.L., Yang, J., et al.: A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J. Mater. Chem. 21, 6807–6810 (2011). https://doi.org/10.1039/C1JM00047K

    Article  CAS  Google Scholar 

  166. Mentbayeva, A., Belgibayeva, A., Umirov, N., et al.: High performance freestanding composite cathode for lithium-sulfur batteries. Electrochim. Acta 217, 242–248 (2016). https://doi.org/10.1016/j.electacta.2016.09.082

    Article  CAS  Google Scholar 

  167. Yin, L.C., Wang, J.L., Lin, F.J., et al.: Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ. Sci. 5, 6966–6972 (2012). https://doi.org/10.1039/C2EE03495F

    Article  CAS  Google Scholar 

  168. Li, J., Li, K., Li, M.Q., et al.: A sulfur-polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability. J. Power Sources 252, 107–112 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.088

    Article  CAS  ADS  Google Scholar 

  169. Liu, Y., Haridas, A.K., Lee, Y., et al.: Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries. Appl. Surf. Sci. 472, 135–142 (2019). https://doi.org/10.1016/j.apsusc.2018.03.062

    Article  CAS  ADS  Google Scholar 

  170. Sohn, H., Gordin, M.L., Regula, M., et al.: Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium-sulfur batteries. J. Power Sources 302, 70–78 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.013

    Article  CAS  ADS  Google Scholar 

  171. Hu, C.J., Chen, H.W., Shen, Y.B., et al.: In situ wrapping of the cathode material in lithium-sulfur batteries. Nat. Commun. 8, 479 (2017). https://doi.org/10.1038/s41467-017-00656-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  172. Zhang, Y.G., Zhao, Y., Yermukhambetova, A., et al.: Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. J. Mater. Chem. A 1, 295–301 (2013). https://doi.org/10.1039/C2TA00105E

    Article  CAS  Google Scholar 

  173. Liu, Y.G., Wang, W.K., Wang, A.B., et al.: A polysulfide reduction accelerator-NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium-sulfur batteries. J. Mater. Chem. A 5, 22120–22124 (2017). https://doi.org/10.1039/C7TA04279E

    Article  CAS  Google Scholar 

  174. Haridas, A., Heo, J., Liu, Y., et al.: Boosting high energy density lithium-ion storage via the rational design of an FeS-incorporated sulfurized polyacrylonitrile fiber hybrid cathode. ACS Appl. Mater. Interfaces 11, 29924–29933 (2019). https://doi.org/10.1021/acsami.9b09026

    Article  CAS  PubMed  Google Scholar 

  175. Zhao, X.H., Wang, C.L., Li, Z.W., et al.: Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects. J. Mater. Chem. A 9, 19282–19297 (2021). https://doi.org/10.1039/d1ta03300j

    Article  CAS  Google Scholar 

  176. Xu, Z.X., Wang, J.L., Yang, J., et al.: Enhanced performance of a lithium-sulfur battery using a carbonate-based electrolyte. Angew. Chem. Int. Ed. 55, 10372–10375 (2016). https://doi.org/10.1002/anie.201605931

    Article  CAS  Google Scholar 

  177. Jin, F., Hu, C.J., Liu, C.H., et al.: Enhancing the performance of sulfurized polyacrylonitrile cathode by in-situ wrapping. J. Electroanal. Chem. 835, 156–160 (2019). https://doi.org/10.1016/j.jelechem.2019.01.032

    Article  CAS  Google Scholar 

  178. Yang, H.J., Li, Q.Y., Guo, C., et al.: Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chem. Commun. (Camb.) 54, 4132–4135 (2018). https://doi.org/10.1039/c7cc09942h

    Article  CAS  PubMed  ADS  Google Scholar 

  179. Chen, W.J., Li, B.Q., Zhao, C.X., et al.: Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Ed. 59, 10732–10745 (2020). https://doi.org/10.1002/anie.201912701

    Article  CAS  ADS  Google Scholar 

  180. Perez Beltran, S., Balbuena, P.B.: A solid electrolyte interphase to protect the sulfurized polyacrylonitrile (SPAN) composite for Li-S batteries: computational approach addressing the electrolyte/SPAN interfacial reactivity. J. Mater. Chem. A 9, 7888–7902 (2021). https://doi.org/10.1039/D1TA00110H

    Article  CAS  Google Scholar 

  181. Yang, H.J., Naveed, A., Li, Q.Y., et al.: Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Mater. 15, 299–307 (2018). https://doi.org/10.1016/j.ensm.2018.05.014

    Article  Google Scholar 

  182. Bonino, F., Morzilli, S., Scrosati, B.: Electrochemical behaviour of metal sulphides as cathodes in primary lithium batteries. J. Power Sources 14, 65–69 (1985). https://doi.org/10.1016/0378-7753(85)88012-5

    Article  CAS  ADS  Google Scholar 

  183. Kaiser, M.R., Han, Z.J., Liang, J., et al.: Lithium sulfide-based cathode for lithium-ion/sulfur battery: recent progress and challenges. Energy Storage Mater. 19, 1–15 (2019). https://doi.org/10.1016/j.ensm.2019.04.001

    Article  Google Scholar 

  184. Zhang, K., Wang, L.J., Hu, Z., et al.: Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries. Sci. Rep. 4, 6467 (2014). https://doi.org/10.1038/srep06467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, C., Wang, X.S., Yang, Y., et al.: Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett. 15, 1796–1802 (2015). https://doi.org/10.1021/acs.nanolett.5b00112

    Article  CAS  PubMed  ADS  Google Scholar 

  186. Tan, G.Q., Xu, R., Xing, Z.Y., et al.: Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2, 1–10 (2017). https://doi.org/10.1038/nenergy.2017.90

    Article  CAS  ADS  Google Scholar 

  187. Yang, Y., McDowell, M.T., Jackson, A., et al.: New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010). https://doi.org/10.1021/nl100504q

    Article  CAS  PubMed  ADS  Google Scholar 

  188. Chen, Y., Lu, S.T., Zhou, J., et al.: Synergistically assembled Li2S/FWNTs@reduced graphene oxide nanobundle forest for free-standing high-performance Li2S cathodes. Adv. Funct. Mater. 27, 1700987 (2017). https://doi.org/10.1002/adfm.201700987

    Article  CAS  Google Scholar 

  189. Seh, Z.W., Wang, H.T., Liu, N., et al.: High-capacity Li2S-graphene oxide composite cathodes with stable cycling performance. Chem. Sci. 5, 1396–1400 (2014). https://doi.org/10.1039/C3SC52789A

    Article  CAS  Google Scholar 

  190. Wang, D.H., Xie, D., Xia, X.H., et al.: A 3D conductive network with high loading Li2S@C for high performance lithium-sulfur batteries. J. Mater. Chem. A 5, 19358–19363 (2017). https://doi.org/10.1039/C7TA06090D

    Article  CAS  Google Scholar 

  191. Zhang, J., Shi, Y., Ding, Y., et al.: A conductive molecular framework derived Li2S/N,P-codoped carbon cathode for advanced lithium-sulfur batteries. Adv. Energy Mater. 7, 1602876 (2017). https://doi.org/10.1002/aenm.201602876

    Article  CAS  Google Scholar 

  192. Wu, F.X., Pollard, T.P., Zhao, E.B., et al.: Layered LiTiO2 for the protection of Li2S cathodes against dissolution: mechanisms of the remarkable performance boost. Energy Environ. Sci. 11, 807–817 (2018). https://doi.org/10.1039/C8EE00419F

    Article  Google Scholar 

  193. He, J.R., Chen, Y.F., Manthiram, A.: Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv. Energy Mater. 9, 1900584 (2019). https://doi.org/10.1002/aenm.201900584

    Article  CAS  Google Scholar 

  194. Zheng, S.Y., Chen, Y., Xu, Y.H., et al.: In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. ACS Nano 7, 10995–11003 (2013). https://doi.org/10.1021/nn404601h

    Article  CAS  PubMed  Google Scholar 

  195. Zhang, S.G., Ueno, K., Dokko, K., et al.: Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015). https://doi.org/10.1002/aenm.201500117

    Article  CAS  Google Scholar 

  196. Ye, F.M., Liu, M.N., Yan, X., et al.: In situ electrochemically derived amorphous-Li2S for high performance Li2S/graphite full cell. Small 14, 1703871 (2018). https://doi.org/10.1002/smll.201703871

    Article  CAS  Google Scholar 

  197. Balach, J., Jaumann, T., Giebeler, L.: Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li-S cells and Si-Li2S full cells in carbonate-based electrolyte. Energy Storage Mater. 8, 209–216 (2017). https://doi.org/10.1016/j.ensm.2017.03.013

    Article  Google Scholar 

  198. Gu, S., Sun, C.Z., Xu, D., et al.: Recent progress in liquid electrolyte-based Li-S batteries: shuttle problem and solutions. Electrochem. Energy Rev. 1, 599–624 (2018)

    Article  CAS  Google Scholar 

  199. Hou, L.P., Zhang, X.Q., Yao, N., et al.: An encapsulating lithium-polysulfide electrolyte for practical lithium-sulfur batteries. Chem 8, 1083–1098 (2022). https://doi.org/10.1016/j.chempr.2021.12.023

    Article  CAS  Google Scholar 

  200. Tan, J., Matz, J., Dong, P., et al.: Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy Storage Mater. 42, 645–678 (2021). https://doi.org/10.1016/j.ensm.2021.08.012

    Article  Google Scholar 

  201. Yang, H.J., Qiao, Y., Chang, Z., et al.: Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid-solid conversion. Angew. Chem. Int. Ed. 60, 17726–17734 (2021). https://doi.org/10.1002/anie.202106788

    Article  CAS  Google Scholar 

  202. Li, X.Y., Feng, S., Zhao, C.X., et al.: Regulating lithium salt to inhibit surface gelation on an electrocatalyst for high-energy-density lithium-sulfur batteries. J. Am. Chem. Soc. 144, 14638–14646 (2022). https://doi.org/10.1021/jacs.2c04176

    Article  CAS  PubMed  Google Scholar 

  203. Qi, X.Q., Yang, F.Y., Sang, P.F., et al.: Electrochemical reactivation of dead Li2S for Li-S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62, e202218803 (2023). https://doi.org/10.1002/anie.202218803

    Article  CAS  Google Scholar 

  204. Fan, L.L., Deng, N.P., Yan, J., et al.: The recent research status quo and the prospect of electrolytes for lithium sulfur batteries. Chem. Eng. J. 369, 874–897 (2019). https://doi.org/10.1016/j.cej.2019.03.145

    Article  CAS  Google Scholar 

  205. Weng, W., Pol, V.G., Amine, K.: Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries. Adv. Mater. 25, 1608–1615 (2013). https://doi.org/10.1002/adma.201204051

    Article  CAS  PubMed  Google Scholar 

  206. Hou, L.P., Li, Z., Yao, N., et al.: Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium-sulfur batteries. Adv. Mater. 34, 2205284 (2022). https://doi.org/10.1002/adma.202205284

    Article  CAS  Google Scholar 

  207. Zhang, X.Q., Jin, Q., Nan, Y.L., et al.: Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries. Angew. Chem. Int. Ed. 60, 15503–15509 (2021). https://doi.org/10.1002/anie.202103470

    Article  CAS  Google Scholar 

  208. Carbone, L., Gobet, M., Peng, J., et al.: Comparative study of ether-based electrolytes for application in lithium-sulfur battery. ACS Appl. Mater. Interfaces 7, 13859–13865 (2015). https://doi.org/10.1021/acsami.5b02160

    Article  CAS  PubMed  Google Scholar 

  209. Chung, S.H., Manthiram, A.: Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30, 1705951 (2018). https://doi.org/10.1002/adma.201705951

    Article  CAS  Google Scholar 

  210. Li, Z.H., Li, X.L., Zhou, L., et al.: A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy 49, 179–185 (2018). https://doi.org/10.1016/j.nanoen.2018.04.040

    Article  CAS  Google Scholar 

  211. Meisner, Q.J., Rojas, T., Dietz Rago, N.L., et al.: Lithium-sulfur battery with partially fluorinated ether electrolytes: interplay between capacity, coulombic efficiency and Li anode protection. J. Power Sources 438, 226939 (2019). https://doi.org/10.1016/j.jpowsour.2019.226939

    Article  CAS  Google Scholar 

  212. Barghamadi, M., Best, A.S., Bhatt, A.I., et al.: Effect of anion on behaviour of Li-S battery electrolyte solutions based on N-methyl-N-butyl-pyrrolidinium ionic liquids. Electrochim. Acta 180, 636–644 (2015). https://doi.org/10.1016/j.electacta.2015.08.132

    Article  CAS  Google Scholar 

  213. Gu, S., Qian, R., Jin, J., et al.: Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries. Phys. Chem. Chem. Phys. 18, 29293–29299 (2016). https://doi.org/10.1039/c6cp04775k

    Article  CAS  PubMed  Google Scholar 

  214. Azimi, N., Xue, Z., Bloom, I., et al.: Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 7, 9169–9177 (2015). https://doi.org/10.1021/acsami.5b01412

    Article  CAS  PubMed  Google Scholar 

  215. Drvarič Talian, S., Jeschke, S., Vizintin, A., et al.: Fluorinated ether based electrolyte for high-energy lithium-sulfur batteries: Li+ solvation role behind reduced polysulfide solubility. Chem. Mater. 29, 10037–10044 (2017). https://doi.org/10.1021/acs.chemmater.7b03654

    Article  CAS  Google Scholar 

  216. Gao, M.Y., Su, C., He, M.N., et al.: A high performance lithium-sulfur battery enabled by a fish-scale porous carbon/sulfur composite and symmetric fluorinated diethoxyethane electrolyte. J. Mater. Chem. A 5, 6725–6733 (2017). https://doi.org/10.1039/C7TA01057E

    Article  CAS  Google Scholar 

  217. Lu, H., Zhang, K., Yuan, Y., et al.: Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether. Electrochim. Acta 161, 55–62 (2015). https://doi.org/10.1016/j.electacta.2015.02.031

    Article  CAS  Google Scholar 

  218. Chen, S.R., Yu, Z.X., Gordin, M.L., et al.: A fluorinated ether electrolyte enabled high performance prelithiated graphite/sulfur batteries. ACS Appl. Mater. Interfaces 9, 6959–6966 (2017). https://doi.org/10.1021/acsami.6b11008

    Article  CAS  PubMed  Google Scholar 

  219. Wang, X.W., Tan, Y.Q., Shen, G.H., et al.: Recent progress in fluorinated electrolytes for improving the performance of Li-S batteries. J. Energy Chem. 41, 149–170 (2020). https://doi.org/10.1016/j.jechem.2019.05.010

    Article  Google Scholar 

  220. Azimi, N., Weng, W., Takoudis, C., et al.: Improved performance of lithium-sulfur battery with fluorinated electrolyte. Electrochem. Commun. 37, 96–99 (2013). https://doi.org/10.1016/j.elecom.2013.10.020

    Article  CAS  Google Scholar 

  221. Weller, C., Thieme, S., Härtel, P., et al.: Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application. J. Electrochem. Soc. 164, A3766–A3771 (2017). https://doi.org/10.1149/2.0981714jes

    Article  CAS  Google Scholar 

  222. Yue, Z., Dunya, H., Aryal, S., et al.: Synthesis and electrochemical properties of partially fluorinated ether solvents for lithiumsulfur battery electrolytes. J. Power Sources 401, 271–277 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.097

    Article  CAS  ADS  Google Scholar 

  223. Wang, S.F., Ding, Y., Zhou, G.M., et al.: Durability of the Li1+xTi2–xAlx(PO4)3 solid electrolyte in lithium-sulfur batteries. ACS Energy Lett. 1, 1080–1085 (2016). https://doi.org/10.1021/acsenergylett.6b00481

    Article  CAS  Google Scholar 

  224. Fu, K., Gong, Y.H., Xu, S.M., et al.: Stabilizing the garnet solid-electrolyte/polysulfide interface in Li-S batteries. Chem. Mater. 29, 8037–8041 (2017). https://doi.org/10.1021/acs.chemmater.7b02339

    Article  CAS  Google Scholar 

  225. Wu, F., Zhu, Q.Z., Chen, R.J., et al.: Ionic liquid-based electrolyte with binary lithium salts for high performance lithium-sulfur batteries. J. Power Sources 296, 10–17 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.033

    Article  CAS  ADS  Google Scholar 

  226. Wang, L.N., Liu, J.Y., Yuan, S.Y., et al.: To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes. Energy Environ. Sci. 9, 224–231 (2016). https://doi.org/10.1039/C5EE02837J

    Article  CAS  Google Scholar 

  227. Zheng, J., Fan, X.L., Ji, G.B., et al.: Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries. Nano Energy 50, 431–440 (2018). https://doi.org/10.1016/j.nanoen.2018.05.065

    Article  CAS  Google Scholar 

  228. Lahiri, A., Li, G.Z., Olschewski, M., et al.: Influence of polar organic solvents in an ionic liquid containing lithium bis(fluorosulfonyl)amide: effect on the cation-anion interaction, lithium ion battery performance, and solid electrolyte interphase. ACS Appl. Mater. Interfaces 8, 34143–34150 (2016). https://doi.org/10.1021/acsami.6b12751

    Article  CAS  PubMed  Google Scholar 

  229. Cheng, H., Zhang, S.C., Zhang, B., et al.: N-Hexane diluted electrolyte with ultralow density enables Li-S pouch battery toward > 400 Wh kg−1. Small 19, e2206375 (2023). https://doi.org/10.1002/smll.202206375

    Article  CAS  PubMed  Google Scholar 

  230. Pang, Q., Shyamsunder, A., Narayanan, B., et al.: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0

    Article  CAS  ADS  Google Scholar 

  231. Park, J.W., Ueno, K., Tachikawa, N., et al.: Ionic liquid electrolytes for lithium-sulfur batteries. J. Phys. Chem. C 117, 20531–20541 (2013). https://doi.org/10.1021/jp408037e

    Article  CAS  Google Scholar 

  232. Wang, J., Chew, S.Y., Zhao, Z.W., et al.: Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46, 229–235 (2008). https://doi.org/10.1016/j.carbon.2007.11.007

    Article  CAS  Google Scholar 

  233. Wang, L.N., Byon, H.R.: N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium-sulfur batteries. J. Power Sources 236, 207–214 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.068

    Article  CAS  Google Scholar 

  234. Tachikawa, N., Yamauchi, K., Takashima, E., et al.: Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. Chem. Commun. (Camb.) 47, 8157–8159 (2011). https://doi.org/10.1039/c1cc12415c

    Article  CAS  PubMed  Google Scholar 

  235. Dokko, K., Tachikawa, N., Yamauchi, K., et al.: Solvate ionic liquid electrolyte for Li-S batteries. J. Electrochem. Soc. 160, A1304–A1310 (2013). https://doi.org/10.1149/2.111308jes

    Article  CAS  Google Scholar 

  236. Li, W.Y., Pang, Y., Zhu, T.C., et al.: A gel polymer electrolyte based lithium-sulfur battery with low self-discharge. Solid State Ion. 318, 82–87 (2018). https://doi.org/10.1016/j.ssi.2017.08.018

    Article  CAS  Google Scholar 

  237. Cheng, J.Y., Yang, X.Y., Dong, L.B., et al.: Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis. Polym. Test. 59, 371–376 (2017). https://doi.org/10.1016/j.polymertesting.2017.02.021

    Article  CAS  Google Scholar 

  238. Chen, P., Wu, Z., Guo, T., et al.: Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance. Adv. Mater. 33, 2007549 (2021). https://doi.org/10.1002/adma.202007549

    Article  CAS  Google Scholar 

  239. Xue, Z.G., He, D., Xie, X.L.: Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015). https://doi.org/10.1039/c5ta03471j

    Article  CAS  Google Scholar 

  240. Judez, X., Zhang, H., Li, C.M., et al.: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell. J. Phys. Chem. Lett. 8, 1956–1960 (2017). https://doi.org/10.1021/acs.jpclett.7b00593

    Article  CAS  PubMed  Google Scholar 

  241. Eshetu, G., Judez, X., Li, C.M., et al.: Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 140, 9921–9933 (2018). https://doi.org/10.1021/jacs.8b04612

    Article  CAS  PubMed  Google Scholar 

  242. Zhang, H., Oteo, U., Judez, X., et al.: Designer anion enabling solid-state lithium-sulfur batteries. Joule 3, 1689–1702 (2019). https://doi.org/10.1016/j.joule.2019.05.003

    Article  CAS  Google Scholar 

  243. Zhang, Z.C., Sherlock, D., West, R., et al.: Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity. Macromolecules 36, 9176–9180 (2003). https://doi.org/10.1021/ma0349276

    Article  CAS  ADS  Google Scholar 

  244. Umeshbabu, E., Zheng, B.Z., Yang, Y.: Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2, 199–230 (2019)

    Article  CAS  Google Scholar 

  245. Liang, X., Wang, L.L., Wu, X.L., et al.: Solid-state electrolytes for solid-state lithium-sulfur batteries: comparisons, advances and prospects. J. Energy Chem. 73, 370–386 (2022). https://doi.org/10.1016/j.jechem.2022.06.035

    Article  CAS  Google Scholar 

  246. Yen, Y.J., Chung, S.H.: Lithium-sulfur cells with a sulfide solid electrolyte/polysulfide cathode interface. J. Mater. Chem. A 11, 4519–4526 (2023). https://doi.org/10.1039/D2TA07806F

    Article  CAS  Google Scholar 

  247. Li, S.Y., Ruan, J.F., Jiang, R.H., et al.: Inorganic all-solid-state lithium-sulfur batteries enhanced by facile thermal formation. Energy Storage Mater. 48, 283–289 (2022). https://doi.org/10.1016/j.ensm.2022.03.028

    Article  Google Scholar 

  248. Wu, J.H., Liu, S.F., Han, F.D., et al.: Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33, e2000751 (2021). https://doi.org/10.1002/adma.202000751

    Article  CAS  PubMed  Google Scholar 

  249. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066

    Article  CAS  PubMed  ADS  Google Scholar 

  250. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  251. Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007). https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  252. Li, Y.T., Han, J.T., Wang, C.A., et al.: Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012). https://doi.org/10.1039/C2JM31413D

    Article  CAS  Google Scholar 

  253. Duan, H.H., Li, L.S., Fu, X.X., et al.: A functional additive to in situ construct stable cathode and anode interfaces for all-solid-state lithium-sulfur batteries. Chem. Eng. J. 450, 138208 (2022). https://doi.org/10.1016/j.cej.2022.138208

    Article  CAS  Google Scholar 

  254. Yan, K., Lu, Z.D., Lee, H.W., et al.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 1–8 (2016). https://doi.org/10.1038/nenergy.2016.10

    Article  CAS  ADS  Google Scholar 

  255. Fu, K.K., Gong, Y.H., Liu, B.Y., et al.: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017). https://doi.org/10.1126/sciadv.1601659

    Article  CAS  PubMed  ADS  Google Scholar 

  256. Han, X.G., Gong, Y.H., Fu, K.K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821

    Article  CAS  PubMed  ADS  Google Scholar 

  257. Aono, H., Sugimoto, E., Sadaoka, Y., et al.: Electrical properties and sinterability for lithium germanium phosphate Li1+xMxGe2−x(PO4)3, M = Al, Cr, Ga, Fe, Sc, and In systems. Bull. Chem. Soc. Jpn. 65, 2200–2204 (1992). https://doi.org/10.1246/bcsj.65.2200

    Article  CAS  Google Scholar 

  258. Hao, Y.J., Wang, S., Xu, F., et al.: A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects. ACS Appl. Mater. Interfaces 9, 33735–33739 (2017). https://doi.org/10.1021/acsami.7b07057

    Article  CAS  PubMed  Google Scholar 

  259. Mercier, R., Malugani, J.P., Fahys, B., et al.: Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ion. 5, 663–666 (1981). https://doi.org/10.1016/0167-2738(81)90341-6

    Article  CAS  Google Scholar 

  260. Pradel, A., Ribes, M.: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching. Solid State Ion. 18(19), 351–355 (1986). https://doi.org/10.1016/0167-2738(86)90139-6

    Article  Google Scholar 

  261. Kanno, R., Murayama, M.: Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001). https://doi.org/10.1149/1.1379028

    Article  CAS  Google Scholar 

  262. Yao, X.Y., Huang, N., Han, F.D., et al.: High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017). https://doi.org/10.1002/aenm.201602923

    Article  CAS  Google Scholar 

  263. Xu, R.C., Xia, X.H., Wang, X.L., et al.: Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 5, 2829–2834 (2017). https://doi.org/10.1039/C6TA10142A

    Article  CAS  Google Scholar 

  264. Ji, Y.C., Yang, K., Liu, M.Q., et al.: PIM-1 as a multifunctional framework to enable high-performance solid-state lithium-sulfur batteries. Adv. Funct. Mater. 31, 2104830 (2021). https://doi.org/10.1002/adfm.202104830

    Article  CAS  Google Scholar 

  265. Judez, X., Piszcz, M., Coya, E., et al.: Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis(fluorosulfonyl)imide. Solid State Ion. 318, 95–101 (2018). https://doi.org/10.1016/j.ssi.2017.07.021

    Article  CAS  Google Scholar 

  266. Judez, X., Eshetu, G.G., Gracia, I., et al.: Understanding the role of nano-aluminum oxide in all-solid-state lithium-sulfur batteries. ChemElectroChem 6, 326–330 (2019). https://doi.org/10.1002/celc.201801390

    Article  CAS  Google Scholar 

  267. Suriyakumar, S., Gopi, S., Kathiresan, M., et al.: Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim. Acta 285, 355–364 (2018). https://doi.org/10.1016/j.electacta.2018.08.012

    Article  CAS  Google Scholar 

  268. Wu, J.F., Guo, X.: MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 7, 2653–2659 (2019). https://doi.org/10.1039/C8TA10124H

    Article  CAS  Google Scholar 

  269. Chen, L., Fan, L.Z.: Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater. 15, 37–45 (2018). https://doi.org/10.1016/j.ensm.2018.03.015

    Article  CAS  Google Scholar 

  270. Jiang, J.H., Wang, A.B., Wang, W.K., et al.: P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium-sulfur batteries. J. Energy Chem. 46, 114–122 (2020). https://doi.org/10.1016/j.jechem.2019.10.009

    Article  Google Scholar 

  271. Inada, T., Kobayashi, T., Sonoyama, N., et al.: All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON. J. Power Sources 194, 1085–1088 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.100

    Article  CAS  ADS  Google Scholar 

  272. Sakuda, A., Kuratani, K., Yamamoto, M., et al.: All-solid-state battery electrode sheets prepared by a slurry coating process. J. Electrochem. Soc. 164, A2474–A2478 (2017). https://doi.org/10.1149/2.0951712jes

    Article  CAS  Google Scholar 

  273. Zhu, G.L., Zhao, C.Z., Yuan, H., et al.: Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries. Energy Storage Mater. 31, 267–273 (2020). https://doi.org/10.1016/j.ensm.2020.05.017

    Article  Google Scholar 

  274. Tan, D.H.S., Banerjee, A., Chen, Z., et al.: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020). https://doi.org/10.1038/s41565-020-0657-x

    Article  CAS  PubMed  ADS  Google Scholar 

  275. Wang, C.H., Liang, J.W., Zhao, Y., et al.: All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021). https://doi.org/10.1039/D1EE00551K

    Article  CAS  Google Scholar 

  276. Arora, P., Zhang, Z.M.: Battery separators. Chem. Rev. 104, 4419–4462 (2004). https://doi.org/10.1021/cr020738u

    Article  CAS  PubMed  Google Scholar 

  277. He, Y.B., Qiao, Y., Zhou, H.S.: Recent advances in functional modification of separators in lithium-sulfur batteries. Dalton Trans. 47, 6881–6887 (2018). https://doi.org/10.1039/c7dt04717g

    Article  CAS  PubMed  Google Scholar 

  278. Yang, Y.F., Mu, P., Li, B.C., et al.: In situ separator modification with an N-rich conjugated microporous polymer for the effective suppression of polysulfide shuttle and Li dendrite growth. ACS Appl. Mater. Interfaces 14, 49224–49232 (2022). https://doi.org/10.1021/acsami.2c15812

    Article  CAS  PubMed  Google Scholar 

  279. Su, Y.S., Manthiram, A.: Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 3, 1166 (2012). https://doi.org/10.1038/ncomms2163

    Article  PubMed  ADS  Google Scholar 

  280. Wang, J.G., Yang, Y., Kang, F.Y.: Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries. Electrochim. Acta 168, 271–276 (2015). https://doi.org/10.1016/j.electacta.2015.04.055

    Article  CAS  Google Scholar 

  281. Wang, Z.H., Zhang, J., Yang, Y.X., et al.: Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance lithium-sulfur batteries. J. Power Sources 329, 305–313 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.087

    Article  CAS  ADS  Google Scholar 

  282. Yao, H.B., Yan, K., Li, W.Y., et al.: Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ. Sci. 7, 3381–3390 (2014). https://doi.org/10.1039/C4EE01377H

    Article  CAS  Google Scholar 

  283. Wang, L., Yang, Z., Nie, H.G., et al.: A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries. J. Mater. Chem. A 4, 15343–15352 (2016). https://doi.org/10.1039/C6TA07027B

    Article  CAS  Google Scholar 

  284. Zhu, J.D., Chen, C., Lu, Y., et al.: Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries. Carbon 101, 272–280 (2016). https://doi.org/10.1016/j.carbon.2016.02.007

    Article  CAS  Google Scholar 

  285. Liu, W., Jiang, J.B., Yang, K.R., et al.: Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries. PNAS 114, 3578–3583 (2017). https://doi.org/10.1073/pnas.1620809114

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  286. Zhao, H.J., Yan, J., Deng, N.P., et al.: A versatile nano-TiO2 decorated gel separator with derived multi-scale nanofibers towards dendrite-blocking and polysulfide-inhibiting lithium-metal batteries. J. Energy Chem. 55, 190–201 (2021). https://doi.org/10.1016/j.jechem.2020.07.015

    Article  CAS  Google Scholar 

  287. Wang, Q.S., Wen, Z.Y., Yang, J.H., et al.: Electronic and ionic co-conductive coating on the separator towards high-performance lithium-sulfur batteries. J. Power Sources 306, 347–353 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.109

    Article  CAS  ADS  Google Scholar 

  288. Kong, L., Jin, Q., Zhang, X.T., et al.: Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries. J. Energy Chem. 39, 17–22 (2019). https://doi.org/10.1016/j.jechem.2018.12.012

    Article  Google Scholar 

  289. Cai, W.L., Li, G.R., He, F., et al.: A novel laminated separator with multi functions for high-rate dischargeable lithium-sulfur batteries. J. Power Sources 283, 524–529 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.085

    Article  CAS  ADS  Google Scholar 

  290. Zhou, X.Y., Liao, Q.C., Tang, J.J., et al.: A high-level N-doped porous carbon nanowire modified separator for long-life lithium-sulfur batteries. J. Electroanal. Chem. 768, 55–61 (2016). https://doi.org/10.1016/j.jelechem.2016.02.037

    Article  CAS  Google Scholar 

  291. Wang, X.F., Wang, Z.X., Chen, L.Q.: Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery. J. Power Sources 242, 65–69 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.063

    Article  CAS  ADS  Google Scholar 

  292. Kim, H.M., Hwang, J.Y., Manthiram, A., et al.: High-performance lithium-sulfur batteries with a self-assembled multiwall carbon nanotube interlayer and a robust electrode-electrolyte interface. ACS Appl. Mater. Interfaces 8, 983–987 (2016). https://doi.org/10.1021/acsami.5b10812

    Article  CAS  PubMed  Google Scholar 

  293. Ma, Z.L., Li, Z., Hu, K., et al.: The enhancement of polysulfide absorbsion in Li-S batteries by hierarchically porous CoS2/carbon paper interlayer. J. Power Sources 325, 71–78 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.139

    Article  CAS  ADS  Google Scholar 

  294. Chen, M., Shao, M.M., Jin, J.T., et al.: Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: a review. Energy Storage Mater. 47, 629–648 (2022). https://doi.org/10.1016/j.ensm.2022.02.051

    Article  Google Scholar 

  295. Huang, J.Q., Zhang, B., Xu, Z.L., et al.: Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium-sulfur batteries. J. Power Sources 285, 43–50 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.140

    Article  CAS  ADS  Google Scholar 

  296. Chung, S.H., Han, P., Singhal, R., et al.: Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 5, 1500738 (2015). https://doi.org/10.1002/aenm.201500738

    Article  CAS  Google Scholar 

  297. Jin, Z.Q., Xie, K., Hong, X.B., et al.: Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources 218, 163–167 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.100

    Article  CAS  ADS  Google Scholar 

  298. Huang, J.Q., Zhang, Q., Wei, F.: Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater. 1, 127–145 (2015). https://doi.org/10.1016/j.ensm.2015.09.008

    Article  Google Scholar 

  299. Zhao, M., Li, B.Q., Zhang, X.Q., et al.: A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 6, 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Agubra, V.A., Zuniga, L., Flores, D., et al.: Composite nanofibers as advanced materials for Li-ion, Li-O2 and Li-S batteries. Electrochim. Acta 192, 529–550 (2016). https://doi.org/10.1016/j.electacta.2016.02.012

    Article  CAS  Google Scholar 

  301. Rehman, S., Guo, S.J., Hou, Y.L.: Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 28, 3167–3172 (2016). https://doi.org/10.1002/adma.201506111

    Article  CAS  PubMed  Google Scholar 

  302. Li, C., Liu, R., Xiao, Y., et al.: Recent progress of separators in lithium-sulfur batteries. Energy Storage Mater. 40, 439–460 (2021). https://doi.org/10.1016/j.ensm.2021.05.034

    Article  Google Scholar 

  303. Yeon, J.S., Park, T.H., Ko, Y.H., et al.: 2D spinel ZnCo2O4 microsheet-coated functional separator for promoted redox kinetics and inhibited polysulfide dissolution. J. Energy Chem. 55, 468–475 (2021). https://doi.org/10.1016/j.jechem.2020.07.007

    Article  CAS  Google Scholar 

  304. Sun, Z.H., Zhang, J.Q., Yin, L.C., et al.: Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  305. Kong, W.B., Yan, L.J., Luo, Y.F., et al.: Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries. Adv. Funct. Mater. 27, 1606663 (2017). https://doi.org/10.1002/adfm.201606663

    Article  CAS  Google Scholar 

  306. Sun, W., Ou, X.G., Yue, X.Y., et al.: A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries. Electrochim. Acta 207, 198–206 (2016). https://doi.org/10.1016/j.electacta.2016.04.135

    Article  CAS  Google Scholar 

  307. Luo, L.Y., Qin, X.Y., Wu, J.X., et al.: An interwoven MoO3@CNT scaffold interlayer for high-performance lithium-sulfur batteries. J. Mater. Chem. A 6, 8612–8619 (2018). https://doi.org/10.1039/C8TA01726C

    Article  CAS  Google Scholar 

  308. Liu, Y.M., Qin, X.Y., Zhang, S.Q., et al.: Fe3O4-decorated porous graphene interlayer for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 10, 26264–26273 (2018). https://doi.org/10.1021/acsami.8b07316

    Article  CAS  PubMed  Google Scholar 

  309. Yang, Y.B., Xu, H., Wang, S.X., et al.: N-doped carbon-coated hollow carbon nanofibers with interspersed TiO2 for integrated separator of Li-S batteries. Electrochim. Acta 297, 641–649 (2019). https://doi.org/10.1016/j.electacta.2018.12.009

    Article  CAS  Google Scholar 

  310. Yang, Y.B., Zhang, L.T., Xu, H., et al.: Net-structured filter of Co(OH)2-anchored carbon nanofibers with ketjen black for high performance Li-S batteries. ACS Sustain. Chem. Eng. 6, 17099–17107 (2018). https://doi.org/10.1021/acssuschemeng.8b04468

    Article  CAS  Google Scholar 

  311. Kim, M.S., Ma, L., Choudhury, S., et al.: Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir-Blodgett process: application in lithium-sulfur batteries. J. Mater. Chem. A 4, 14709–14719 (2016). https://doi.org/10.1039/C6TA06018H

    Article  CAS  Google Scholar 

  312. Hong, X.J., Tan, T.X., Guo, Y.K., et al.: Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Nanoscale 10, 2774–2780 (2018). https://doi.org/10.1039/c7nr07118c

    Article  CAS  PubMed  Google Scholar 

  313. Wang, H.L., Zhu, Q.L., Zou, R.Q., et al.: Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002

    Article  CAS  Google Scholar 

  314. Cheng, J.Y., Liu, K.L., Li, X., et al.: Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution. Environ. Sci. Ecotechnol. 3, 100035 (2020). https://doi.org/10.1016/j.ese.2020.100035

    Article  PubMed  PubMed Central  Google Scholar 

  315. Zhao, J., Wang, Y.N., Dong, W.W., et al.: A robust luminescent Tb(III)-MOF with Lewis basic pyridyl sites for the highly sensitive detection of metal ions and small molecules. Inorg. Chem. 55, 3265–3271 (2016). https://doi.org/10.1021/acs.inorgchem.5b02294

    Article  CAS  PubMed  Google Scholar 

  316. Cheng, J.Y., Liang, J., Dong, L.B., et al.: Self-assembly of 2D-metal-organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions. RSC Adv. 8, 40813–40822 (2018). https://doi.org/10.1039/C8RA08410F

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  317. Bai, S.Y., Liu, X.Z., Zhu, K., et al.: Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 1–6 (2016). https://doi.org/10.1038/nenergy.2016.94

    Article  CAS  Google Scholar 

  318. Bai, S.Y., Zhu, K., Wu, S.C., et al.: A long-life lithium-sulphur battery by integrating zinc-organic framework based separator. J. Mater. Chem. A 4, 16812–16817 (2016). https://doi.org/10.1039/C6TA07337A

    Article  CAS  Google Scholar 

  319. He, Y.B., Chang, Z., Wu, S.C., et al.: Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 8, 1802130 (2018). https://doi.org/10.1002/aenm.201802130

  320. Zeng, P., Huang, L.W., Zhang, X.L., et al.: Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement. Appl. Surf. Sci. 427, 242–252 (2018). https://doi.org/10.1016/j.apsusc.2017.08.062

    Article  CAS  ADS  Google Scholar 

  321. He, J.R., Chen, Y.F., Manthiram, A.: Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ. Sci. 11, 2560–2568 (2018). https://doi.org/10.1039/C8EE00893K

    Article  CAS  Google Scholar 

  322. Yang, Y.B., Wang, S.X., Zhang, L.T., et al.: CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. Chem. Eng. J. 369, 77–86 (2019). https://doi.org/10.1016/j.cej.2019.03.034

    Article  CAS  Google Scholar 

  323. Zhang, Y.Z., Xu, G.X., Kang, Q., et al.: Synergistic electrocatalysis of polysulfides by a nanostructured VS4-carbon nanofiber functional separator for high-performance lithium-sulfur batteries. J. Mater. Chem. A 7, 16812–16820 (2019). https://doi.org/10.1039/C9TA03516H

    Article  CAS  Google Scholar 

  324. Tian, D., Song, X.Q., Wang, M.X., et al.: MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 9, 1901940 (2019). https://doi.org/10.1002/aenm.201901940

    Article  CAS  Google Scholar 

  325. Song, Y.Z., Zhao, S.Y., Chen, Y.R., et al.: Enhanced sulfur redox and polysulfide regulation via porous VN-modified separator for Li-S batteries. ACS Appl. Mater. Interfaces 11, 5687–5694 (2019). https://doi.org/10.1021/acsami.8b22014

    Article  CAS  PubMed  Google Scholar 

  326. Bai, J., Li, X., Wang, A.J., et al.: Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP. J. Catal. 287, 161–169 (2012). https://doi.org/10.1016/j.jcat.2011.12.018

    Article  CAS  Google Scholar 

  327. Sun, Z.H., Wu, X.L., Peng, Z.Q., et al.: Compactly coupled nitrogen-doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres as polysulfide reservoirs for high-performance lithium-sulfur chemistry. Small 15, 1902491 (2019). https://doi.org/10.1002/smll.201902491

    Article  CAS  Google Scholar 

  328. Zhang, Y.G., Wang, Y.G., Luo, R.J., et al.: A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries. Nanoscale Horiz. 5, 530–540 (2020). https://doi.org/10.1039/c9nh00532c

    Article  CAS  PubMed  ADS  Google Scholar 

  329. Xu, W., Wang, J.L., Ding, F., et al.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K

    Article  CAS  Google Scholar 

  330. Al Khazraji, M.R., Wang, J.D., Wei, S.Y.: Recent progress of anode protection in Li-S batteries. Energy Technol. 11, 2200944 (2023). https://doi.org/10.1002/ente.202200944

    Article  CAS  Google Scholar 

  331. Li, W.J., Zheng, H., Chu, G., et al.: Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. Faraday Discuss. 176, 109–124 (2014). https://doi.org/10.1039/c4fd00124a

    Article  CAS  PubMed  ADS  Google Scholar 

  332. Chandrashekar, S., Trease, N.M., Chang, H.J., et al.: 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012). https://doi.org/10.1038/nmat3246

    Article  CAS  PubMed  ADS  Google Scholar 

  333. Bhattacharyya, R., Key, B., Chen, H.L., et al.: In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010). https://doi.org/10.1038/nmat2764

    Article  CAS  PubMed  ADS  Google Scholar 

  334. Wood, K.N., Kazyak, E., Chadwick, A.F., et al.: Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016). https://doi.org/10.1021/acscentsci.6b00260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Liu, Y.M., Zhang, S.Q., Qin, X.Y., et al.: In-plane highly dispersed Cu2O nanoparticles for seeded lithium deposition. Nano Lett. 19, 4601–4607 (2019). https://doi.org/10.1021/acs.nanolett.9b01567

    Article  CAS  PubMed  ADS  Google Scholar 

  336. Fan, X.Z., Liu, M., Zhang, R.Q., et al.: An odyssey of lithium metal anode in liquid lithium-sulfur batteries. Chin. Chem. Lett. 33, 4421–4427 (2022). https://doi.org/10.1016/j.cclet.2021.12.064

    Article  CAS  Google Scholar 

  337. Yan, C., Zhang, X.Q., Huang, J.Q., et al.: Lithium-anode protection in lithium-sulfur batteries. Trends Chem. 1, 693–704 (2019). https://doi.org/10.1016/j.trechm.2019.06.007

    Article  CAS  Google Scholar 

  338. Hou, L.P., Zhang, X.Q., Li, B.Q., et al.: Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries. Mater. Today 45, 62–76 (2021). https://doi.org/10.1016/j.mattod.2020.10.021

    Article  CAS  Google Scholar 

  339. Hou, L.P., Yao, L.Y., Bi, C.X., et al.: High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium-sulfur batteries. J. Energy Chem. 68, 300–305 (2022). https://doi.org/10.1016/j.jechem.2021.12.024

    Article  CAS  Google Scholar 

  340. Kim, H., Bang, S., Min, K.J., et al.: Achieving high-performance Li-S batteries via polysulfide adjoining interface engineering. ACS Appl. Mater. Interfaces 13, 39435–39445 (2021). https://doi.org/10.1021/acsami.1c10756

    Article  CAS  PubMed  Google Scholar 

  341. Suo, L.M., Hu, Y.S., Li, H., et al.: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513

    Article  CAS  PubMed  ADS  Google Scholar 

  342. Sun, K., Wu, Q., Tong, X., et al.: Electrolyte with low polysulfide solubility for Li-S batteries. ACS Appl. Energy Mater. 1, 2608–2618 (2018). https://doi.org/10.1021/acsaem.8b00317

    Article  CAS  Google Scholar 

  343. Kong, X.R., Kong, Y.C., Zheng, Y.Y., et al.: Hydrofluoroether diluted dual-salts-based electrolytes for lithium-sulfur batteries with enhanced lithium anode protection. Small 18, 2205017 (2022). https://doi.org/10.1002/smll.202205017

    Article  CAS  Google Scholar 

  344. Su, C.C., He, M.N., Amine, R., et al.: The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium-sulfur batteries. Angew. Chem. Int. Ed. 57, 12033–12036 (2018). https://doi.org/10.1002/anie.201807367

    Article  CAS  Google Scholar 

  345. Su, C.C., He, M.N., Amine, R., et al.: A selection rule for hydrofluoroether electrolyte cosolvent: establishing a linear free-energy relationship in lithium-sulfur batteries. Angew. Chem. 131, 10701–10705 (2019). https://doi.org/10.1002/ange.201904240

    Article  ADS  Google Scholar 

  346. Gordin, M.L., Dai, F., Chen, S.R., et al.: Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 6, 8006–8010 (2014). https://doi.org/10.1021/am501665s

    Article  CAS  PubMed  Google Scholar 

  347. Zheng, J., Ji, G.B., Fan, X.L., et al.: High-fluorinated electrolytes for Li-S batteries. Adv. Energy Mater. 9, 1803774 (2019). https://doi.org/10.1002/aenm.201803774

    Article  CAS  Google Scholar 

  348. Chen, Y.Q., Zhang, H.Z., Xu, W.B., et al.: Polysulfide stabilization: a pivotal strategy to achieve high energy density Li–S batteries with long cycle life. Adv. Funct. Mater. 28, 1704987 (2018). https://doi.org/10.1002/adfm.201704987

    Article  CAS  Google Scholar 

  349. Pan, H.L., Han, K.S., Vijayakumar, M., et al.: Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium-sulfur batteries. ACS Appl. Mater. Interfaces 9, 4290–4295 (2017). https://doi.org/10.1021/acsami.6b04158

    Article  CAS  PubMed  Google Scholar 

  350. Pan, H.L., Han, K.S., Engelhard, M.H., et al.: Addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28, 1707234 (2018). https://doi.org/10.1002/adfm.201707234

    Article  CAS  Google Scholar 

  351. Yao, Y.X., Zhang, X.Q., Li, B.Q., et al.: A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2, 379–388 (2020). https://doi.org/10.1002/inf2.12046

    Article  CAS  Google Scholar 

  352. Liu, Y.Y., Lin, D.C., Yuen, P.Y., et al.: An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2017). https://doi.org/10.1002/adma.201605531

    Article  CAS  Google Scholar 

  353. Jing, H.K., Kong, L.L., Liu, S., et al.: Protected lithium anode with porous Al2O3 layer for lithium-sulfur battery. J. Mater. Chem. A 3, 12213–12219 (2015). https://doi.org/10.1039/C5TA01490E

    Article  CAS  Google Scholar 

  354. Jiang, Z.G., Liu, T.F., Yan, L.J., et al.: Metal-organic framework nanosheets-guided uniform lithium deposition for metallic lithium batteries. Energy Storage Mater. 11, 267–273 (2018). https://doi.org/10.1016/j.ensm.2017.11.003

    Article  Google Scholar 

  355. Li, Q., Zeng, F.L., Guan, Y.P., et al.: Poly(dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. Energy Storage Mater. 13, 151–159 (2018). https://doi.org/10.1016/j.ensm.2018.01.002

    Article  Google Scholar 

  356. Xu, R., Zhang, X.Q., Cheng, X.B., et al.: Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28, 1705838 (2018). https://doi.org/10.1002/adfm.201705838

    Article  CAS  Google Scholar 

  357. Wang, L.P., Wang, Q.J., Jia, W.S., et al.: Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J. Power Sources 342, 175–182 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.097

    Article  CAS  ADS  Google Scholar 

  358. Zhang, J., Li, H.Q., Tang, Q., et al.: Improved-performance lithium-sulfur batteries modified by magnetron sputtering. RSC Adv. 6, 114447–114452 (2016). https://doi.org/10.1039/C6RA24555B

    Article  CAS  ADS  Google Scholar 

  359. Fan, L., Zhuang, H.L., Gao, L.N., et al.: Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 5, 3483–3492 (2017). https://doi.org/10.1039/C6TA10204B

    Article  CAS  Google Scholar 

  360. Cha, E., Patel, M.D., Park, J., et al.: 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 13, 337–344 (2018). https://doi.org/10.1038/s41565-018-0061-y

    Article  CAS  PubMed  ADS  Google Scholar 

  361. Wu, M.F., Wen, Z.Y., Jin, J., et al.: Trimethylsilyl chloride-modified Li anode for enhanced performance of Li-S cells. ACS Appl. Mater. Interfaces 8, 16386–16395 (2016). https://doi.org/10.1021/acsami.6b02612

    Article  CAS  PubMed  Google Scholar 

  362. Jin, S., Xin, S., Wang, L.J., et al.: Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries. Adv. Mater. 28, 9094–9102 (2016). https://doi.org/10.1002/adma.201602704

    Article  CAS  PubMed  Google Scholar 

  363. Yan, K., Lee, H.W., Gao, T., et al.: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014). https://doi.org/10.1021/nl503125u

    Article  CAS  PubMed  ADS  Google Scholar 

  364. Cao, Y.Q., Meng, X.B., Elam, J.W.: Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem 3, 858–863 (2016). https://doi.org/10.1002/celc.201600139

    Article  CAS  Google Scholar 

  365. Liu, M., Zhou, D., He, Y.B., et al.: Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008

    Article  CAS  ADS  Google Scholar 

  366. Kang, H.K., Woo, S.G., Kim, J.H., et al.: Few-layer graphene island seeding for dendrite-free Li metal electrodes. ACS Appl. Mater. Interfaces 8, 26895–26901 (2016). https://doi.org/10.1021/acsami.6b09757

    Article  CAS  PubMed  Google Scholar 

  367. Liang, Z., Lin, D.C., Zhao, J., et al.: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. PNAS 113, 2862–2867 (2016). https://doi.org/10.1073/pnas.1518188113

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  368. Liang, Z., Zheng, G.Y., Liu, C., et al.: Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15, 2910–2916 (2015). https://doi.org/10.1021/nl5046318

    Article  CAS  PubMed  ADS  Google Scholar 

  369. Cheng, X.B., Hou, T.Z., Zhang, R., et al.: Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016). https://doi.org/10.1002/adma.201506124

    Article  CAS  PubMed  Google Scholar 

  370. Xie, K.Y., Wei, W.F., Yuan, K., et al.: Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D graphene@Ni scaffold. ACS Appl. Mater. Interfaces 8, 26091–26097 (2016). https://doi.org/10.1021/acsami.6b09031

    Article  CAS  PubMed  Google Scholar 

  371. Zhang, R., Cheng, X.B., Zhao, C.Z., et al.: Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016). https://doi.org/10.1002/adma.201504117

    Article  CAS  PubMed  Google Scholar 

  372. Kozen, A.C., Lin, C.F., Pearse, A.J., et al.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015). https://doi.org/10.1021/acsnano.5b02166

    Article  CAS  PubMed  Google Scholar 

  373. Park, C.M., Kim, J.H., Kim, H., et al.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115–3141 (2010). https://doi.org/10.1039/b919877f

    Article  CAS  PubMed  Google Scholar 

  374. Obrovac, M.N., Chevrier, V.L.: Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014). https://doi.org/10.1021/cr500207g

    Article  CAS  PubMed  Google Scholar 

  375. Liu, H., Cheng, X.B., Huang, J.Q., et al.: Alloy anodes for rechargeable alkali-metal batteries: progress and challenge. ACS Mater. Lett. 1, 217–229 (2019). https://doi.org/10.1021/acsmaterialslett.9b00118

    Article  CAS  ADS  Google Scholar 

  376. Cheng, X.B., Peng, H.J., Huang, J.Q., et al.: Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 10, 4257–4263 (2014). https://doi.org/10.1002/smll.201401837

    Article  CAS  PubMed  Google Scholar 

  377. Markevych, A.V., Shembel, E., Straková Fedorková, A., et al.: Innovating sulfur based electrode and modified lithium electrode for stable and safer lithium-sulfur batteries: cycling, impedance, construction. ECS Trans. 95, 9–17 (2019). https://doi.org/10.1149/09501.0009ecst

    Article  CAS  Google Scholar 

  378. Sun, J., Liang, J.X., Liu, J.N., et al.: Towards a reliable Li-metal-free LiNO3-free Li-ion polysulphide full cell via parallel interface engineering. Energy Environ. Sci. 11, 2509–2520 (2018). https://doi.org/10.1039/C8EE00937F

    Article  CAS  Google Scholar 

  379. Kong, L.L., Wang, L., Ni, Z.C., et al.: Lithium-magnesium alloy as a stable anode for lithium-sulfur battery. Adv. Funct. Mater. 29, 1808756 (2019). https://doi.org/10.1002/adfm.201808756

    Article  CAS  Google Scholar 

  380. Xia, S.X., Zhang, X., Liang, C., et al.: Stabilized lithium metal anode by an efficient coating for high-performance Li-S batteries. Energy Storage Mater. 24, 329–335 (2020). https://doi.org/10.1016/j.ensm.2019.07.042

    Article  Google Scholar 

  381. Chen, T., Kong, W.H., Zhao, P.Y., et al.: Dendrite-free and stable lithium metal anodes enabled by an antimony-based lithiophilic interphase. Chem. Mater. 31, 7565–7573 (2019). https://doi.org/10.1021/acs.chemmater.9b02356

    Article  CAS  Google Scholar 

  382. Ren, Y.X., Zeng, L., Jiang, H.R., et al.: Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries. Nat. Commun. 10, 3249 (2019). https://doi.org/10.1038/s41467-019-11168-y

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  383. Jin, B.Y., Li, Y., Qian, J., et al.: Environmentally friendly binders for lithium-sulfur batteries. ChemElectroChem 7, 4158–4176 (2020). https://doi.org/10.1002/celc.202000993

    Article  CAS  Google Scholar 

  384. Shim, J., Striebel, K.A., Cairns, E.J.: The lithium/sulfur rechargeable cell. J. Electrochem. Soc. 149, A1321 (2002). https://doi.org/10.1149/1.1503076

    Article  CAS  Google Scholar 

  385. Kim, N.I., Lee, C.B., Seo, J.M., et al.: Correlation between positive-electrode morphology and sulfur utilization in lithium-sulfur battery. J. Power Sources 132, 209–212 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.028

    Article  CAS  ADS  Google Scholar 

  386. Yi, H., Lan, T., Yang, Y., et al.: Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium-sulfur batteries. J. Mater. Chem. A 6, 18660–18668 (2018). https://doi.org/10.1039/C8TA07194B

    Article  CAS  Google Scholar 

  387. Pan, J., Xu, G.Y., Ding, B., et al.: Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Adv. 5, 13709–13714 (2015). https://doi.org/10.1039/C4RA15303K

    Article  CAS  ADS  Google Scholar 

  388. Jung, Y., Kim, S.: New approaches to improve cycle life characteristics of lithium-sulfur cells. Electrochem. Commun. 9, 249–254 (2007). https://doi.org/10.1016/j.elecom.2006.09.013

    Article  CAS  Google Scholar 

  389. He, M., Yuan, L.X., Zhang, W.X., et al.: Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J. Phys. Chem. C 115, 15703–15709 (2011). https://doi.org/10.1021/jp2043416

    Article  CAS  Google Scholar 

  390. Zhang, Z., Bao, W., Lu, H., et al.: Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery. ECS Electrochem. Lett. 1, A34–A37 (2012). https://doi.org/10.1149/2.009202eel

    Article  CAS  Google Scholar 

  391. Rao, M.M., Song, X.Y., Liao, H.G., et al.: Carbon nanofiber-sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim. Acta 65, 228–233 (2012). https://doi.org/10.1016/j.electacta.2012.01.051

    Article  CAS  Google Scholar 

  392. Bhattacharya, P., Nandasiri, M.I., Lv, D.P., et al.: Polyamidoamine dendrimer-based binders for high-loading lithium-sulfur battery cathodes. Nano Energy 19, 176–186 (2016). https://doi.org/10.1016/j.nanoen.2015.11.012

    Article  CAS  Google Scholar 

  393. Liu, J., Galpaya, D.G.D., Yan, L.J., et al.: Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery. Energy Environ. Sci. 10, 750–755 (2017). https://doi.org/10.1039/C6EE03033E

    Article  CAS  Google Scholar 

  394. Seh, Z.W., Zhang, Q.F., Li, W.Y., et al.: Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4, 3673–3677 (2013). https://doi.org/10.1039/C3SC51476E

    Article  CAS  Google Scholar 

  395. Ling, M., Yan, W.J., Kawase, A., et al.: Electrostatic polysulfides confinement to inhibit redox shuttle process in the lithium sulfur batteries. ACS Appl. Mater. Interfaces 9, 31741–31745 (2017). https://doi.org/10.1021/acsami.7b06485

    Article  CAS  PubMed  Google Scholar 

  396. Guo, R.N., Wang, J.L., Zhang, S.L., et al.: Multifunctional cross-linked polymer-laponite nanocomposite binder for lithium-sulfur batteries. Chem. Eng. J. 388, 124316 (2020). https://doi.org/10.1016/j.cej.2020.124316

    Article  CAS  Google Scholar 

  397. Chen, W., Qian, T., Xiong, J., et al.: A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv. Mater. 29, 1605160 (2017). https://doi.org/10.1002/adma.201605160

    Article  CAS  Google Scholar 

  398. Liao, J.B., Liu, Z., Wang, J.L., et al.: Cost-effective water-soluble poly(vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium-sulfur batteries. ACS Omega 5, 8272–8282 (2020). https://doi.org/10.1021/acsomega.0c00666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Zhang, L., Ling, M., Feng, J., et al.: Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy 40, 559–565 (2017). https://doi.org/10.1016/j.nanoen.2017.09.003

    Article  CAS  Google Scholar 

  400. Wang, H., Yang, Y., Zheng, P.T., et al.: Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries. Chem. Eng. J. 395, 124981 (2020). https://doi.org/10.1016/j.cej.2020.124981

    Article  CAS  Google Scholar 

  401. Liu, J., Li, Y.Y., Xuan, Y.X., et al.: Multifunctional cellulose nanocrystals as a high-efficient polysulfide stopper for practical Li-S batteries. ACS Appl. Mater. Interfaces 12, 17592–17601 (2020). https://doi.org/10.1021/acsami.0c00537

    Article  CAS  PubMed  Google Scholar 

  402. Fu, X.W., Scudiero, L., Zhong, W.H.: A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7, 1835–1848 (2019). https://doi.org/10.1039/C8TA11384J

    Article  CAS  Google Scholar 

  403. Zhang, Y.G., Zhao, Y., Doan, T.N.L., et al.: A novel sulfur/polypyrrole/multi-walled carbon nanotube nanocomposite cathode with core-shell tubular structure for lithium rechargeable batteries. Solid State Ion. 238, 30–35 (2013). https://doi.org/10.1016/j.ssi.2013.03.006

    Article  CAS  Google Scholar 

  404. Li, G.C., Li, G.R., Ye, S.H., et al.: A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2, 1238–1245 (2012). https://doi.org/10.1002/aenm.201200017

    Article  CAS  Google Scholar 

  405. Li, W.Y., Zhang, Q.F., Zheng, G.Y., et al.: Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–5540 (2013). https://doi.org/10.1021/nl403130h

    Article  CAS  PubMed  ADS  Google Scholar 

  406. Ai, G., Dai, Y.L., Ye, Y.F., et al.: Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy 16, 28–37 (2015). https://doi.org/10.1016/j.nanoen.2015.05.036

    Article  CAS  Google Scholar 

  407. Milroy, C., Manthiram, A.: An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium-sulfur batteries. Adv. Mater. 28, 9744–9751 (2016). https://doi.org/10.1002/adma.201601665

    Article  CAS  PubMed  Google Scholar 

  408. Yang, X.F., Li, X., Adair, K., et al.: Structural design of lithium-sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239–293 (2018)

    Article  CAS  Google Scholar 

  409. Ye, H.L., Sun, J.G., Zhao, Y., et al.: An integrated approach to improve the performance of lean-electrolyte lithium-sulfur batteries. J. Energy Chem. 67, 585–592 (2022). https://doi.org/10.1016/j.jechem.2021.11.004

    Article  CAS  Google Scholar 

  410. Chung, S.H., Chang, C.H., Manthiram, A.: Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv. Funct. Mater. 28, 1801188 (2018). https://doi.org/10.1002/adfm.201801188

    Article  CAS  Google Scholar 

  411. Bhargav, A., He, J.R., Gupta, A., et al.: Lithium-sulfur batteries: attaining the critical metrics. Joule 4, 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001

    Article  Google Scholar 

  412. Hagen, M., Hanselmann, D., Ahlbrecht, K., et al.: Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015). https://doi.org/10.1002/aenm.201401986

    Article  CAS  Google Scholar 

  413. Zhao, M., Li, B.Q., Peng, H.J., et al.: Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed Engl. 59, 12636–12652 (2020). https://doi.org/10.1002/anie.201909339

    Article  CAS  PubMed  Google Scholar 

  414. Chen, Z.X., Zhao, M., Hou, L.P., et al.: Toward practical high-energy-density lithium-sulfur pouch cells: a review. Adv. Mater. 34, e2201555 (2022). https://doi.org/10.1002/adma.202201555

    Article  CAS  PubMed  Google Scholar 

  415. Peng, H.J., Huang, J.Q., Cheng, X.B., et al.: Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017). https://doi.org/10.1002/aenm.201700260

    Article  CAS  Google Scholar 

  416. Nanda, S., Gupta, A., Manthiram, A.: A lithium-sulfur cell based on reversible lithium deposition from a Li2S cathode host onto a hostless-anode substrate. Adv. Energy Mater. 8, 1801556 (2018). https://doi.org/10.1002/aenm.201801556

    Article  CAS  Google Scholar 

  417. Zhao, C., Daali, A., Hwang, I., et al.: Pushing lithium-sulfur batteries towards practical working conditions through a cathode-electrolyte synergy. Angewandte Chemie Int. Ed. 61, e202203466 (2022). https://doi.org/10.1002/anie.202203466

    Article  CAS  ADS  Google Scholar 

  418. Chen, Z.X., Hou, L.P., Bi, C.X., et al.: Failure analysis of high-energy-density lithium-sulfur pouch cells. Energy Storage Mater. 53, 315–321 (2022). https://doi.org/10.1016/j.ensm.2022.07.035

    Article  Google Scholar 

  419. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  ADS  Google Scholar 

  420. Nofal, M., Pan, Y.Y., Al-Hallaj, S.: Selective laser sintering of phase change materials for thermal energy storage applications. Proc. Manuf. 10, 851–865 (2017). https://doi.org/10.1016/j.promfg.2017.07.071

    Article  Google Scholar 

  421. Lu, X.F., Zhao, T.K., Ji, X.L., et al.: 3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor. J. Alloys Compd. 760, 78–83 (2018). https://doi.org/10.1016/j.jallcom.2018.05.165

    Article  CAS  Google Scholar 

  422. Park, S.H., Kaur, M., Yun, D., et al.: Hierarchically designed electron paths in 3D printed energy storage devices. Langmuir 34, 10897–10904 (2018). https://doi.org/10.1021/acs.langmuir.8b02404

    Article  CAS  PubMed  Google Scholar 

  423. Milroy, C.A., Jang, S., Fujimori, T., et al.: Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing. Small 13, 1603786 (2017). https://doi.org/10.1002/smll.201603786

    Article  CAS  Google Scholar 

  424. Luong, D.X., Subramanian, A.K., Silva, G.A.L., et al.: Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater. 30, 1707416 (2018). https://doi.org/10.1002/adma.201707416

    Article  CAS  Google Scholar 

  425. Calignano, F., Tommasi, T., Manfredi, D., et al.: Additive manufacturing of a microbial fuel cell: a detailed study. Sci. Rep. 5, 17373 (2015). https://doi.org/10.1038/srep17373

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  426. Milroy, C., Manthiram, A.: Printed microelectrodes for scalable, high-areal-capacity lithium-sulfur batteries. Chem. Commun. (Camb.) 52, 4282–4285 (2016). https://doi.org/10.1039/c5cc10503j

    Article  CAS  PubMed  Google Scholar 

  427. Gao, X.J., Sun, Q., Yang, X.F., et al.: Toward a remarkable Li-S battery via 3D printing. Nano Energy 56, 595–603 (2019). https://doi.org/10.1016/j.nanoen.2018.12.001

    Article  CAS  Google Scholar 

  428. Chen, C.L., Jiang, J.M., He, W.J., et al.: 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv. Funct. Mater. 30, 1909469 (2020). https://doi.org/10.1002/adfm.201909469

    Article  CAS  Google Scholar 

  429. Blake, A.J., Kohlmeyer, R.R., Hardin, J.O., et al.: 3D printable ceramic-polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv. Energy Mater. 7, 1602920 (2017). https://doi.org/10.1002/aenm.201602920

    Article  CAS  Google Scholar 

  430. Zekoll, S., Marriner-Edwards, C., Ola Hekselman, A.K., et al.: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018). https://doi.org/10.1039/C7EE02723K

    Article  CAS  Google Scholar 

  431. McOwen, D.W., Xu, S.M., Gong, Y.H., et al.: 3D-printing electrolytes for solid-state batteries. Adv. Mater. 30, 1707132 (2018). https://doi.org/10.1002/adma.201707132

    Article  CAS  Google Scholar 

  432. Zhang, Q.H., Zhou, J.Q., Chen, Z.H., et al.: Direct ink writing of moldable electrochemical energy storage devices: ongoing progress, challenges, and prospects. Adv. Eng. Mater. 23, 2100068 (2021). https://doi.org/10.1002/adem.202100068

    Article  CAS  Google Scholar 

  433. Shen, K., Li, B., Yang, S.B.: 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 24, 670–675 (2020). https://doi.org/10.1016/j.ensm.2019.08.015

    Article  Google Scholar 

  434. Lyu, Z.Y., Lim, G.J.H., Guo, R., et al.: 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 24, 336–342 (2020). https://doi.org/10.1016/j.ensm.2019.07.041

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the following financial supports: Guangdong Science and Technology Bureau (Grant No. 2019B090908001 and 2020A0505090011), Shenzhen STI (Grant No. SGDX20190816230615451), Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices (Grant No. 2019B121205001), Otto Poon Charitable Foundation (Grant No. 847W) and HKPolyU Postdoctoral Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junye Cheng, Qi Liu or Guohua Chen.

Ethics declarations

Conflict of interest

Xifei Li is an executive editor-in-chief for Electrochemical Energy Reviews and was not involved in neither the editorial review nor the decision to publish this article. All authors declare that there are no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, H., Bai, S., Cheng, J. et al. Li-S Batteries: Challenges, Achievements and Opportunities. Electrochem. Energy Rev. 6, 29 (2023). https://doi.org/10.1007/s41918-023-00188-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-023-00188-4

Keywords

Navigation