Skip to main content
Log in

Modeling of PEM Fuel Cell Catalyst Layers: Status and Outlook

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Computational modeling has played a key role in advancing the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs). In recent years there has been a significant focus on PEMFC catalyst layers because of their determining impact on cost and and durability. Further progress in the design of better performance, cheaper and more durable catalyst layers is required to pave the way for large scale deployment of PEMFCs. The catalyst layer poses many challenges from a modeling standpoint: it consists of a complex, multi-phase, nanostructured porous material that is difficult to characterize; and it hosts an array of coupled transport phenomena including flow of gases, liquid water, heat and charged occurring in conjunction with electrochemical reactions. This review paper examines several aspects of state-of-the-art modeling and simulation of PEMFC catalyst layers, with a view of synthesizing the theoretical foundations of various approaches, identifying gaps and outlining critical needs for further research. The review starts with a rigorous revisiting of the mathematical framework based on the volume averaging method. Various macroscopic models reported in the literature that describe the salient transport phenomena are then introduced, and their links with the volume averaged method are elucidated. Other classes of modeling and simulation methods with different levels of resolution of the catalyst layer structure, e.g. the pore scale model which treats materials as continuum, and various meso- and microscopic methods, which take into consideration the dynamics at the sub-grid level, are reviewed. Strategies for multiscale simulations that can bridge the gap between macroscopic and microscopic models are discussed. An important aspect pertaining to transport properties of catalyst layers is the modeling and simulation of the fabrication processes which is also reviewed. Last but not least, the review examines modeling of liquid water transport in the catalyst layer and its implications on the overall transport properties. The review concludes with an outlook on future research directions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

PEMFC:

polymer electrolyte membrane fuel cell

GDL:

gas diffusion layer

MPL:

microporous Layer

CL:

catalyst layer

MEA:

membrane electrode assembly

CFD:

computational fluid dynamics

MD:

molecular dynamics

KMC:

kinetic Monte Carlo

CPt:

carbon-platinum

REV:

representative element volume

VAM:

volume averaging method

DNS:

direct numerical simulation

LBM:

lattice Boltzmann model

References

  1. Costamagna, P., Srinivasan, S.: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects. J. Power Sources 102, 242–252 (2001)

    Article  CAS  Google Scholar 

  2. Costamagna, P., Srinivasan, S.: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. Part II Engineering, technology development and application aspects. J. Power Sources 102, 253–269 (2001)

    Article  CAS  Google Scholar 

  3. Weber, A.Z., Newman, J.: Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 104, 4679–4726 (2004). https://doi.org/10.1021/cr020729l

    Article  CAS  PubMed  Google Scholar 

  4. Wang, C.Y.: Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4765 (2004). https://doi.org/10.1021/cr020718s

    Article  CAS  PubMed  Google Scholar 

  5. Djilali, N.: Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy. 32, 269–280 (2007). https://doi.org/10.1016/j.energy.2006.08.007

    Article  CAS  Google Scholar 

  6. Djilali, N., Sui, P.C.: Transport phenomena in fuel cells: from microscale to macroscale. Int. J. Comut. Fluid Dyn. 22, 115–133 (2008). https://doi.org/10.1080/10618560701740017

    Article  Google Scholar 

  7. Weber, A.Z., Borup, R.L., Darling, R.M.: A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 161, F1254–F1299 (2014). https://doi.org/10.1149/2.0751412jes

    Article  CAS  Google Scholar 

  8. Mehta, V., Cooper, J.S.: Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003)

    Article  CAS  Google Scholar 

  9. Litster, S., McLean, G.: PEM fuel cell electrodes. J. Power Sources 130, 61–76 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055

    Article  CAS  Google Scholar 

  10. Antolini, E.: Recent developments in polymer electrolyte fuel cell electrodes. J. Appl. Electrochem. 34, 563–576 (2004)

    Article  CAS  Google Scholar 

  11. Bernardi, D.M., Verbrugge, M.W.: A mathematical-model of the solid-polymer-electrolyte fuel-cell. J. Electrochem. Soc. 139, 2477–2491 (1992)

    Article  CAS  Google Scholar 

  12. Debe, M.K., Schmoeckel, A.K., Vernstrorn, G.D., et al.: High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 161, 1002–1011 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.033

    Article  CAS  Google Scholar 

  13. Gancs, L., Kobayashi, T., Debe, M.K., et al.: Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: a HRTEM study. Chem. Mater. 20, 2444–2454 (2008). https://doi.org/10.1021/cm702992b

    Article  CAS  Google Scholar 

  14. Mantzaras, J., Freunberger, S.A., Buchi, F.N., et al.: Fuel cell modeling and simulations. Chimia (Aarau). 58, 857–868 (2004)

    Article  CAS  Google Scholar 

  15. Weber, A.Z., Newman, J.: Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 104, 4679–4726 (2004). https://doi.org/10.1021/Cr020729l

    Article  CAS  PubMed  Google Scholar 

  16. Biyikoglu, A.: Review of proton exchange membrane fuel cell models. Int. J. Hydrogen Energy 30, 1181–1212 (2005). https://doi.org/10.1016/j.ijhydene.2005.05.010

    Article  CAS  Google Scholar 

  17. Promislow, K., Wetton, B.: PEM fuel cells: a mathematical overview. Soc. Ind. Appl. Math. 70, 369–409 (2009)

    Article  CAS  Google Scholar 

  18. Shah, A.A., Luo, K.H., Ralph, T.R., et al.: Recent trends and developments in polymer electrolyte membrane fuel cell modelling. Electrochim. Acta 56(11), 3731–3757 (2011)

    Article  CAS  Google Scholar 

  19. Sui, P.C., Djilali, N.: Fuel cells—proton-exchange membrane fuel cells|modeling. In: Jürgen, G. (ed.) Encyclopedia of electrochemical power sources, pp. 868–878. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  20. Wang, Y., Chen, K.S., Mishler, J., et al.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  CAS  Google Scholar 

  21. Andreaus, B., Eikerling, M.: Catalyst layer operation in PEM Fuel cells: from structural pictures to tractable models. In: Paddison, S.J., Promislow, K.S. (eds.) Device and Materials Modeling in Pem Fuel Cells, pp. 41–90. Springer, Berlin (2009)

    Chapter  Google Scholar 

  22. Eikerling, M.: Water management in cathode catalyst layers of PEM fuel cells: a structure-based model. J. Electrochem. Soc. 153, E58–E70 (2006). https://doi.org/10.1149/1.2160435

    Article  CAS  Google Scholar 

  23. Lindermeir, A., Rosenthal, G., Kunz, U., et al.: On the question of MEA preparation for DMFCs. J. Power Sources 129, 180–187 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.002

    Article  CAS  Google Scholar 

  24. Maric, R.: Spray-based and CVD processes for synthesis of fuel cell catalysts and thin catalyst layers. In: Zhang, J. (ed.) PEM Fuel Cell Electrocatalysts and Catalyst Layers, pp. 917–963. Springer, London (2008)

    Chapter  Google Scholar 

  25. Gurau, V., Mann, J.A.: A critical overview of computational fluid dynamics multiphase models for proton exchange membrane fuel cells. SIAM J. Appl. Math. 70, 410–454 (2009). https://doi.org/10.1137/080727993

    Article  CAS  Google Scholar 

  26. Dai, W., Wang, H.J., Yuan, X.Z., et al.: A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 34, 9461–9478 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.017

    Article  CAS  Google Scholar 

  27. Jiao, K., Li, X.G.: Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37, 221–291 (2011). https://doi.org/10.1016/j.pecs.2010.06.002

    Article  CAS  Google Scholar 

  28. Zhang, S.S., Yuan, X.Z., Hin, J.N.C., et al.: A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 194, 588–600 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.073

    Article  CAS  Google Scholar 

  29. Kaviany, M.: Principles of heat transfer in porous media. Springer, New York (1995)

    Book  Google Scholar 

  30. Whitaker, S.: The Method of Volume Averaging. Kluwer Academic, Dordrecht (1999)

    Book  Google Scholar 

  31. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New York (2006)

    Book  Google Scholar 

  32. DeVidts, P., White, R.E.: Governing equations for transport in porous electrodes. J. Electrochem. Soc. 144, 1343–1353 (1997)

    Article  CAS  Google Scholar 

  33. Wang, C.Y., Gu, W.B., Liaw, B.Y.: Micro-macroscopic coupled modeling of batteries and fuel cells: I. Model development. J. Electrochem. Soc. 145, 3407–3417 (1998)

    Article  CAS  Google Scholar 

  34. Baschuk, J.J., Li, X.G.: A general formulation for a mathematical PEM fuel cell model. J. Power Sources 142, 134–153 (2005)

    Article  CAS  Google Scholar 

  35. Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., et al.: Phase separation in confined systems. Reports Prog. Phys. 62, 1573–1659 (1999)

    Article  CAS  Google Scholar 

  36. Nguyen, T.V., White, R.E.: A water and heat management model for proton-exchange-membrane fuel-cells. J. Electrochem. Soc. 140, 2178–2186 (1993)

    Article  CAS  Google Scholar 

  37. Bradean, R., Promislow, K., Wetton, B.: Transport phenomena in the porous cathode of a proton exchange membrane fuel cell. Numer. Heat Transf. Part A Appl. 42, 121–138 (2002). https://doi.org/10.1080/10407780290059468

    Article  CAS  Google Scholar 

  38. Kulikovsky, A.A.: Quasi-3D modeling of water transport in polymer electrolyte fuel cells. J. Electrochem. Soc. 150, A1432–A1439 (2003). https://doi.org/10.1149/1.1611489

    Article  CAS  Google Scholar 

  39. Kazim, A., Liu, H.T., Forges, P.: Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields. J. Appl. Electrochem. 29, 1409–1416 (1999). https://doi.org/10.1023/a:1003867012551

    Article  CAS  Google Scholar 

  40. Singh, D., Lu, D.M., Djilali, N.: A two-dimensional analysis of mass transport in proton exchange membrane fuel cells. Int. J. Eng. Sci. 37, 431–452 (1999). https://doi.org/10.1016/s0020-7225(98)00079-2

    Article  CAS  Google Scholar 

  41. Berning, T., Lu, D.M., Djilali, N.: Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sources 106, 284–294 (2002)

    Article  CAS  Google Scholar 

  42. Bernardi, D.M., Verbrugge, M.W.: Mathematical-model of a gas-diffusion electrode bonded to a polymer electrolyte. AIChE J. 37, 1151–1163 (1991)

    Article  CAS  Google Scholar 

  43. Fuller, T.F., Newman, J.: Water and thermal management in solid-polymer-electrolyte fuel-cells. J. Electrochem. Soc. 140, 1218–1225 (1993)

    Article  CAS  Google Scholar 

  44. Bevers, D., Wohr, M., Yasuda, K., et al.: Simulation of a polymer electrolyte fuel cell electrode. J. Appl. Electrochem. 27, 1254–1264 (1997)

    Article  CAS  Google Scholar 

  45. Rowe, A., Li, X.G.: Mathematical modeling of proton exchange membrane fuel cells. J. Power Sources 102, 82–96 (2001)

    Article  CAS  Google Scholar 

  46. You, L.X., Liu, H.T.: A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model. Int. J. Hydrogen Energy 26, 991–999 (2001)

    Article  CAS  Google Scholar 

  47. Perry, M.L., Newman, J., Cairns, E.J.: Mass transport in gas-diffusion electrodes: a diagnostic tool for fuel-cell cathodes. J. Electrochem. Soc. 145, 5–15 (1998). https://doi.org/10.1149/1.1838202

    Article  CAS  Google Scholar 

  48. Um, S., Wang, C.Y., Chen, K.S.: Computational fluid dynamics modeling of proton exchange membrane fuel cells. J. Electrochem. Soc. 147, 4485–4493 (2000). https://doi.org/10.1149/1.1394090

    Article  CAS  Google Scholar 

  49. Meng, H., Wang, C.Y.: Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells. J. Electrochem. Soc. 152, A1733–A1741 (2005). https://doi.org/10.1149/1.1955007

    Article  CAS  Google Scholar 

  50. Jaouen, F., Lindbergh, G., Sundholm, G.: Investigation of mass-transport limitations in the solid polymer fuel cell cathode: I. Mathematical model. J. Electrochem. Soc. 149, A437–A447 (2002)

    Article  CAS  Google Scholar 

  51. Siegel, N.P., Ellis, M.W., Nelson, D.J., et al.: Single domain PEMFC model based on agglomerate catalyst geometry. J. Power Sources 115, 81–89 (2003)

    Article  CAS  Google Scholar 

  52. Broka, K., Ekdunge, P.: Modelling the PEM fuel cell cathode. J. Appl. Electrochem. 27, 281–289 (1997)

    Article  CAS  Google Scholar 

  53. Ihonen, J., Jaouen, F., Lindbergh, G., et al.: Investigation of mass-transport limitations in the solid polymer fuel cell cathode: II. Experimental. J. Electrochem. Soc. 149, A448–A454 (2002)

    Article  CAS  Google Scholar 

  54. More, K.L., Borup, R., Reeves, K.S.: Identifying contribution degradation phenomena in PEM fuel cell membrane electrode assemblies via electronic microscopy. ECS Trans. 3, 717–733 (2006)

    Article  CAS  Google Scholar 

  55. Iczkowski, R.P., Cutlip, M.B.: Voltage Losses in Fuel-Cell Cathodes. J. Electrochem. Soc. 127, 1433–1440 (1980)

    Article  CAS  Google Scholar 

  56. Sun, W., Peppley, B.A., Karan, K.: An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochim. Acta 50, 3359–3374 (2005). https://doi.org/10.1016/j.electacta.2004.12.009

    Article  CAS  Google Scholar 

  57. Gode, P., Jaouen, F., Lindbergh, G., et al.: Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochim. Acta 48, 4175–4187 (2003). https://doi.org/10.1016/s0013-4686(03)00603-0

    Article  CAS  Google Scholar 

  58. Wang, Q.P., Eikerling, M., Song, D.T., et al.: Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells. J. Electroanal. Chem. 573, 61–69 (2004)

    CAS  Google Scholar 

  59. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena. Wiley, New York (2007)

    Google Scholar 

  60. Ridge, S.J., White, R.E., Tsou, Y., et al.: Oxygen reduction in a proton-exchange membrane test cell. J. Electrochem. Soc. 136, 1902–1909 (1989)

    Article  CAS  Google Scholar 

  61. Song, D.T., Wang, Q.P., Liu, Z.S., et al.: Numerical study of PEM fuel cell cathode with non-uniform catalyst layer. Electrochim. Acta 50, 731–737 (2004)

    Article  CAS  Google Scholar 

  62. Sui, P.C., Chen, L.D., Seaba, J.P., et al.: Modeling and optimization of PEMFC active layer. In: Stobart, R., Seaba, J.P. (eds.) Fuel Cell Power for Transportation. SAE International, Detroit (1999)

  63. Gloaguen, F., Leger, J.M., Lamy, C.: Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates. J. Appl. Electrochem. 27, 1052–1060 (1997)

    Article  CAS  Google Scholar 

  64. Gloaguen, F., Convert, P., Gamburzev, S., et al.: An evaluation of the macro-homogeneous and agglomerate model for oxygen reduction in PEMFCs. Electrochim. Acta 43, 3767–3772 (1998)

    Article  CAS  Google Scholar 

  65. Rao, R.M., Rengaswamy, R.: Dynamic characteristics of spherical agglomerate for study of cathode catalyst layers in proton exchange membrane fuel cells (PEMFC). J. Power Sources 158, 110–123 (2006)

    Article  CAS  Google Scholar 

  66. Pisani, L., Murgia, G., Valentini, M., et al.: A working model of polymer electrolyte fuel cells: comparisons between theory and experiments. J. Electrochem. Soc. 149, A898–A904 (2002)

    Article  CAS  Google Scholar 

  67. Dannenberg, K., Ekdunge, P., Lindbergh, G.: Mathematical model of the PEMFC. J. Appl. Electrochem. 30, 1377–1387 (2000)

    Article  CAS  Google Scholar 

  68. Song, D.T., Wang, Q.P., Liu, Z.S., et al.: A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochim. Acta 50, 3347–3358 (2005)

    Article  CAS  Google Scholar 

  69. Wang, Q.P., Song, D.T., Navessin, T., et al.: A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells. Electrochim. Acta 50, 725–730 (2004). https://doi.org/10.1016/j.electacta.2004.01.113

    Article  CAS  Google Scholar 

  70. Wang, Q.P., Eikerling, M., Song, D.T., et al.: Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: I. Theoretical modeling. J. Electrochem. Soc. 151, A950–A957 (2004)

    Article  CAS  Google Scholar 

  71. Shah, A.A., Kim, G.S., Gervais, W., et al.: The effects of water and microstructure on the performance of polymer electrolyte fuel cells. J. Power Sources 160, 1251–1268 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.085

    Article  CAS  Google Scholar 

  72. Shah, A.A., Kim, G.S., Promislow, K.: Mathematical modelling of the catalyst layer of a polymer electrolyte fuel cell. Ima J. Appl. Math. 72, 302–330 (2007). https://doi.org/10.1093/imamat/hxm005

    Article  Google Scholar 

  73. Harvey, D., Pharoah, J.G., Karan, K.: A comparison of different approaches to modelling the PEMFC catalyst layer. J. Power Sources 179, 209–219 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.077

    Article  CAS  Google Scholar 

  74. Secanell, M., Karan, K., Suleman, A., et al.: Multi-variable optimization of PEMFC cathodes using an agglomerate model. Electrochim. Acta 52, 6318–6337 (2007). https://doi.org/10.1016/j.electacta.2007.04.028

    Article  CAS  Google Scholar 

  75. Das, P.K., Li, X.G., Liu, Z.S.: A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells. J. Power Sources 179, 186–199 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.085

    Article  CAS  Google Scholar 

  76. Kamarajugadda, S., Mazumder, S.: Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance. J. Power Sources 183, 629–642 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.072

    Article  CAS  Google Scholar 

  77. Malek, K., Eikerling, M., Wang, Q.P., et al.: Self-organization in catalyst layers of polymer electrolyte fuel cells. J. Phys. Chem. C 111, 13627–13634 (2007). https://doi.org/10.1021/jp072692k

    Article  CAS  Google Scholar 

  78. Mazumder, S., Cole, J.V.: Rigorous 3-d mathematical modeling of PEM fuel cells: I. Model predictions without liquid water transport. J. Electrochem. Soc. 150, A1503–A1509 (2003). https://doi.org/10.1149/1.1615608

    Article  CAS  Google Scholar 

  79. Li, S., Cao, J., Wangard, W., et al.: Modeling PEMFC with fluent: Numerical performance and validations with experimental data. Paper presented at the 3rd International Conference on Fuel Cell Science, Engineering, and Technology, Ypsilanti, Michigan, 23–25 May 2003 (2005)

  80. Humby, S.J., Biggs, M.J., Tuzun, U.: Explicit numerical simulation of fluids in reconstructed porous media. Chem. Eng. Sci. 57, 1955–1968 (2002)

    Article  CAS  Google Scholar 

  81. Wang, G.Q.: Direct numerical simulation of porous electrodes for fuel cells and advanced batteries. Dissertation, The Pennsylvania State University (2003)

  82. Prat, M.: Recent advances in pore-scale models for drying of porous media. Chem. Eng. J. 86, 153–164 (2002). https://doi.org/10.1016/s1385-8947(01)00283-2

    Article  CAS  Google Scholar 

  83. Lange, K.J., Sui, P.C., Djilali, N.: Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers. J. Electrochem. Soc. 157, B1434–B1442 (2010). https://doi.org/10.1149/1.3478207

    Article  CAS  Google Scholar 

  84. Kohout, M., Grof, Z., Stepanek, F.: Pore-scale modelling and tomographic visualisation of drying in granular media. J. Colloid Interface Sci. 299, 342–351 (2006)

    Article  CAS  PubMed  Google Scholar 

  85. Mukherjee, P.P., Wang, C.Y., Kang, Q.: Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells. Electrochim. Acta 54, 6861–6875 (2009). https://doi.org/10.1016/j.electacta.2009.06.066

    Article  CAS  Google Scholar 

  86. Kohout, M., Collier, A.P., Stepanek, F.: Mathematical modelling of solvent drying from a static particle bed. Chem. Eng. Sci. 61, 3674–3685 (2006)

    Article  CAS  Google Scholar 

  87. Parmigiani, A., Huber, C., Bachmann, O., et al.: Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40–76 (2011). https://doi.org/10.1017/jfm.2011.268

    Article  CAS  Google Scholar 

  88. Stepanek, F., Marek, M., Hanika, J., et al.: Mesoscale modeling in multiphase catalysis. Catal. Today 66, 249–254 (2001)

    Article  CAS  Google Scholar 

  89. Koci, P., Stepanek, F., Kubicek, M., et al.: Modelling of micro/nano-scale concentration and temperature gradients in porous supported catalysts. Chem. Eng. Sci. 62, 5380–5385 (2007). https://doi.org/10.1016/j.ces.2006.12.033

    Article  CAS  Google Scholar 

  90. Koci, P., Stepanek, F., Kubicek, A., et al.: Pore-scale modeling of non-isothermal reaction phenomena in digitally reconstructed porous catalyst. Mol. Simul. 33, 369–377 (2007). https://doi.org/10.1080/08927020601156426

    Article  CAS  Google Scholar 

  91. Stepanek, F., Ansari, M.A.: Computer simulation of granule microstructure formation. Chem. Eng. Sci. 60, 4019–4029 (2005)

    Article  CAS  Google Scholar 

  92. Antoine, O., Bultel, Y., Durand, R., et al.: Electrocatalysis, diffusion and ohmic drop in PEMFC: particle size and spatial discrete distribution effects. Electrochim. Acta 43, 3681–3691 (1998)

    Article  CAS  Google Scholar 

  93. Flückiger, R.: Transport phenomena on the channel-rib scale of polymer electrolyte fuel cells. ETH, Zürich (2009)

  94. Wang, G.Q., Mukherjee, P.P., Wang, C.Y.: Direct numerical simulation (DNS) modeling of PEFC electrodes: Part I. Regular microstructure. Electrochim. Acta. 51, 3139–3150 (2006)

    Article  CAS  Google Scholar 

  95. Wang, G.Q., Mukherjee, P.P., Wang, C.Y.: Direct numerical simulation (DNS) modeling of PEFC electrodes: Part II. Random microstructure. Electrochim. Acta. 51, 3151–3160 (2006)

    Article  CAS  Google Scholar 

  96. Mukherjee, P.P., Wang, C.Y.: Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. J. Electrochem. Soc. 153, A840–A849 (2006)

    Article  CAS  Google Scholar 

  97. Lange, K.J., Sui, P.C., Djilali, N.: Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: effects of water vapor and temperature. J. Power Sources 196, 3195–3203 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.118

    Article  CAS  Google Scholar 

  98. Lange, K.J., Sui, P.C., Djilali, N.: Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: effects of water vapor and temperature (vol 196, pg 3195, 2011). J. Power Sources 196, 8170–8171 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.001

    Article  CAS  Google Scholar 

  99. Torquato, S.: Statistical description of microstructures. Annu. Rev. Mater. Res. 32, 77–111 (2002)

    Article  CAS  Google Scholar 

  100. Delerue, J.P., Perrier, E., Yu, Z.Y., et al.: New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils. Phys. Chem. Earth Part A Solid Earth Geod. 24, 639–644 (1999). https://doi.org/10.1016/s1464-1895(99)00093-9

    Article  Google Scholar 

  101. Delerue, J.F., Perrier, E.: DXSoil, a library for 3D image analysis in soil science. Comput. Geosci. 28, 1041–1050 (2002). https://doi.org/10.1016/s0098-3004(02)00020-1

    Article  Google Scholar 

  102. Silin, D.B., Jin, G.D., Patzek, T.W.: Robust determination of the pore-space morphology in sedimentary rocks. J. Pet. Technol. 56, 69–70 (2004)

    Google Scholar 

  103. Arns, C.H., Bauget, F., Limaye, A., et al.: Pore-scale characterization of carbonates using X-ray microtomography. SPE J. 10, 475–484 (2005)

    Article  Google Scholar 

  104. Oren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46, 311–343 (2002)

    Article  Google Scholar 

  105. Oren, P.E., Bakke, S.: Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J. Pet. Sci. Eng. 39, 177–199 (2003). https://doi.org/10.1016/s0920-4105(03)00062-7

    Article  CAS  Google Scholar 

  106. Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. Phys. Rev. E. 71, 026301 (2005). https://doi.org/10.1103/PhysRevE.71.026302

    Article  CAS  Google Scholar 

  107. Joshi, M.: A class of stochastic models for porous materials. University of Kansas, Lawrence (1974)

    Google Scholar 

  108. Quiblier, J.A.: A new 3-dimensional modeling technique for studying porous-media. J. Colloid Interface Sci. 98, 84–102 (1984). https://doi.org/10.1016/0021-9797(84)90481-8

    Article  CAS  Google Scholar 

  109. Adler, P.M., Jacquin, C.G., Quiblier, J.A.: Flow in simulated porous-media. Int. J. Multiph. Flow 16, 691–712 (1990). https://doi.org/10.1016/0301-9322(90)90025-e

    Article  CAS  Google Scholar 

  110. Adler, P.M.: Porous Media: Geometry and Transport. Butterworth-Heinemann, Boston (1992)

    Google Scholar 

  111. Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 57, 495–506 (1998)

    Article  CAS  Google Scholar 

  112. Yeong, C.L.Y., Torquato, S.: Reconstructing random media. II. Three-dimensional media from two-dimensiomal cuts. Phys. Rev. E 58, 224–233 (1998)

    Article  CAS  Google Scholar 

  113. Rong, F., Huang, C., Liu, Z.S., et al.: Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling Part I. Mechanical model. J. Power Sources 175, 699–711 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.006

    Article  CAS  Google Scholar 

  114. Kim, S.H., Pitsch, H.: Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. J. Electrochem. Soc. 156, B673–B681 (2009). https://doi.org/10.1149/1.3106136

    Article  CAS  Google Scholar 

  115. Izzo, J.R., Joshi, A.S., Grew, K.N., et al.: Nondestructive reconstruction and analysis of SOFC anodes using x-ray computed tomography at sub-50 nm resolution. J. Electrochem. Soc. 155, B504–B508 (2008). https://doi.org/10.1149/1.2895067

    Article  CAS  Google Scholar 

  116. Shan, X.W., Chen, H.D.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993). https://doi.org/10.1103/PhysRevE.47.1815

    Article  CAS  Google Scholar 

  117. Binder, K., Heermann, D.W.: Monte Carlo simulation in statistical physics: an introduction. Springer, Berlin (1988)

    Book  Google Scholar 

  118. Succi, S.: The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford (2001)

    Google Scholar 

  119. Shi, Z., Zhang, J.J., Liu, Z.S., et al.: Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts. Electrochim. Acta 51, 1905–1916 (2006)

    Article  CAS  Google Scholar 

  120. Liu, X., Meng, C.G., Liu, C.H.: Adsorption and dissociation of O2 on NITI alloy (100) surface from first principle. Abstr. Pap. Am. Chem. Soc. 229, U758–U758 (2005)

    Google Scholar 

  121. Xu, Y., Ruban, A.V., Mavrikakis, M.: Adsorption and dissociation of O(2) on Pt-Co and Pt-Fe alloys. J. Am. Chem. Soc. 126, 4717–4725 (2004). https://doi.org/10.1021/ja031701+

    Article  CAS  PubMed  Google Scholar 

  122. Anderson, A.B., Albu, T.V.: Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J. Am. Chem. Soc. 121, 11855–11863 (1999)

    Article  CAS  Google Scholar 

  123. Anderson, A.B., Albu, T.V.: Catalytic effect of platinum on oxygen reduction: an ab initio model including electrode potential dependence. J. Electrochem. Soc. 147, 4229–4238 (2000)

    Article  CAS  Google Scholar 

  124. Wang, Y.X., Balbuena, P.B.: Roles of proton and electric field in the electroreduction of O-2 on Pt(111) surfaces: results of an ab initio molecular dynamics study. J. Phys. Chem. B. 108, 4376–4384 (2004)

    Article  CAS  Google Scholar 

  125. Norskov, J.K., Rossmeisl, J., Logadottir, A., et al.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108, 17886–17892 (2004)

    Article  CAS  Google Scholar 

  126. Zhang, J.L., Vukmirovic, M.B., Xu, Y., et al.: Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005)

    Article  CAS  Google Scholar 

  127. Buehler, M.J., vanDuin, A.C.T., Goddard, W.A.: Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys. Rev. Lett. 96, 095505 (2006). https://doi.org/10.1103/PhysRevLett.96.095505

    Article  CAS  PubMed  Google Scholar 

  128. Chenoweth, K., Cheung, S., vanDuin, A.C.T., et al.: Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J. Am. Chem. Soc. 127, 7192–7202 (2005)

    Article  CAS  PubMed  Google Scholar 

  129. Cheung, S., Deng, W.Q., vanDuin, A.C.T., et al.: ReaxFF(MgH) reactive force field for magnesium hydride systems. J. Phys. Chem. A 109, 851–859 (2005)

    Article  CAS  PubMed  Google Scholar 

  130. Goddard, W.A., vanDuin, A., Chenoweth, K., et al.: Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx. Top. Catal. 38, 93–103 (2006)

    Article  CAS  Google Scholar 

  131. Han, S.S., vanDuin, A.C.T., Goddard, W.A., et al.: Optimization and application of lithium parameters for the reactive force field, ReaxFF. J. Phys. Chem. A. 109, 4575–4582 (2005). https://doi.org/10.1021/jp051450m

    Article  CAS  PubMed  Google Scholar 

  132. Han, S.S., Kang, J.K., Lee, H.M., et al.: The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFF(HBN) development. J. Chem. Phys. 123, 114703 (2005)

    Article  CAS  PubMed  Google Scholar 

  133. Ludwig, J., Vlachos, D.G., vanDuin, A.C.T., et al.: Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. J. Phys. Chem. B. 110, 4274–4282 (2006)

    Article  CAS  PubMed  Google Scholar 

  134. Nielson, K.D., vanDuin, A.C.T., Oxgaard, J., et al.: Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A 109, 493–499 (2005)

    Article  CAS  PubMed  Google Scholar 

  135. Van Duin, A.C.T., Dasgupta, S., Lorant, F., et al.: Reax FF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001)

    Article  CAS  Google Scholar 

  136. Vashishta, P., Kalia, R.K., Nakano, A.: Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics. J. Phys. Chem. B. 110, 3727–3733 (2006)

    Article  CAS  PubMed  Google Scholar 

  137. Buehler, M.J, Van Duin, A., Jacob, T., et al.: Formation of water at a Pt(111) surface: A study using reactive force fields (ReaxFF). Proc. MRS Fall Meeting (2005). https://doi.org/10.1557/PROC-0900-O03-09

    Article  Google Scholar 

  138. Commer, P., Hartnig, C., Seeliger, D., et al.: Modeling of proton transfer in polymer electrolyte membranes on different time and length scales. Mol. Simul. 30, 755–763 (2004)

    Article  CAS  Google Scholar 

  139. Cui, S.T., Liu, J.W., Selvan, M.E., et al.: A molecular dynamics study of a nafion polyelectrolyte membrane and the aqueous phase structure for proton transport. J. Phys. Chem. B. 111, 2208–2218 (2007)

    Article  CAS  PubMed  Google Scholar 

  140. Urata, S., Irisawa, J., Takada, A., et al.: Molecular dynamics simulation of swollen membrane of perfluorinated ionomer. J. Phys. Chem. B. 109, 4269–4278 (2005)

    Article  CAS  PubMed  Google Scholar 

  141. Zhou, X.Y., Chen, Z., Delgado, F., et al.: Atomistic simulation of conduction and diffusion processes in Nafion polymer electrolyte and experimental validation. J. Electrochem. Soc. 154, B82–B87 (2007)

    Article  CAS  Google Scholar 

  142. Wescott, J.T., Qi, Y., Subramanian, L., et al.: Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J. Chem. Phys. 124, 134702 (2006)

    Article  CAS  PubMed  Google Scholar 

  143. Ioselevich, A.S., Kornyshev, A.A., Steinke, J.H.G.: Fine morphology of proton-conducting ionomers. J. Phys. Chem. B. 108, 11953–11963 (2004). https://doi.org/10.1021/jp049687

    Article  CAS  Google Scholar 

  144. Kornyshev, A.A., Kuznetsov, A.M., Spohr, E., et al.: Kinetics of proton transport in water. J. Phys. Chem. B. 107, 3351–3366 (2003)

    Article  CAS  Google Scholar 

  145. Kreuer, K.D.: On solids with liquidlike properties and the challenge to develop new proton-conducting separator materials for intermediate-temperature fuel cells. ChemPhysChem 3, 771–775 (2002)

    Article  CAS  PubMed  Google Scholar 

  146. Kreuer, K.D., Paddison, S.J., Spohr, E., et al.: Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004)

    Article  CAS  PubMed  Google Scholar 

  147. Marx, D.: Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7, 1848–1870 (2006). https://doi.org/10.1002/cphc.200600128

    Article  PubMed  Google Scholar 

  148. Paddison, S.J.: Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Annu. Rev. Mater. Res. 33, 289–319 (2003). https://www.annualreviews.org/doi/10.1146/annurev.matsci.33.022702.155102

  149. Spohr, E., Commer, P., Kornyshev, A.A.: Enhancing proton mobility in polymer electrolyte membranes: lessons from molecular dynamics simulations. J. Phys. Chem. B. 106, 10560–10569 (2002)

    Article  CAS  Google Scholar 

  150. Spohr, E.: Molecular dynamics simulations of proton transfer in a model Nafion pore. Mol. Simul. 30, 107–115 (2004)

    Article  CAS  Google Scholar 

  151. Tsige, M., Mattsson, T.R., Grest, G.S.: Morphology of evaporated multiblock copolymer membranes studied by molecular dynamics simulations. Macromolecules 37, 9132–9138 (2004)

    Article  CAS  Google Scholar 

  152. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  Google Scholar 

  153. Raabe, D.: Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering. Model. Simul. Mater. Sci. Eng. 12, R13–R46 (2004)

    Article  Google Scholar 

  154. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G., et al.: The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Int. J. Multiph. Flow 29, 117–169 (2003). https://doi.org/10.1016/s0301-9322(02)00108-8

    Article  CAS  Google Scholar 

  155. Aidun, C.K., Clausen, J.R.: Lattice Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010). https://doi.org/10.1146/annurev-fluid-121108-145519

    Article  Google Scholar 

  156. Benzi, R., Succi, S., Vergassola, M.: The lattice boltzmann-equation - theory and applications. Phys. Rep. Rev. Sect. Phys. Lett. 222, 145–197 (1992). https://doi.org/10.1016/0370-1573(92)90090-m

    Article  Google Scholar 

  157. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases.1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954). https://doi.org/10.1103/physrev.94.511

    Article  CAS  Google Scholar 

  158. Guo, Z.L., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E., 036304 (2002). https://doi.org/10.1103/PhysRevE.66.036304

  159. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice–gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56, 1505–1508 (1986). https://doi.org/10.1103/PhysRevLett.56.1505

    Article  CAS  PubMed  Google Scholar 

  160. Qian, Y.H., Dhumieres, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992). https://doi.org/10.1209/0295-5075/17/6/001

    Article  Google Scholar 

  161. Shan, X.W., Doolen, G.: Multicomponent Lattice Boltzmann model with interparticle interaction. J. Stat. Phys. 81, 379–393 (1995). https://doi.org/10.1007/bf02179985

    Article  Google Scholar 

  162. Hou, S.L., Zou, Q., Chen, S.Y., et al.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118, 329–347 (1995). https://doi.org/10.1006/jcph.1995.1103

    Article  Google Scholar 

  163. He, X.Y., Luo, L.S., Dembo, M.: Some progress in lattice Boltzmann method. I Nonuniform mesh grids. J. Comput. Phys. 129, 357–363 (1996). https://doi.org/10.1006/jcph.1996.0255

    Article  Google Scholar 

  164. Chen, S.Y., Martinez, D., Mei, R.W.: On boundary conditions in lattice Boltzmann methods. Phys. Fluids 8, 2527–2536 (1996). https://doi.org/10.1063/1.869035

    Article  CAS  Google Scholar 

  165. He, X.Y., Luo, L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997). https://doi.org/10.1103/PhysRevE.56.6811

    Article  CAS  Google Scholar 

  166. Benzi, R., Biferale, L., Sbragaglia, M., et al.: Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509 (2006). https://doi.org/10.1103/PhysRevE.74.021509

    Article  CAS  Google Scholar 

  167. Zheng, H.W., Shu, C., Chew, Y.T.: A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 218, 353–371 (2006). https://doi.org/10.1016/j.jcp.2006.02.015

    Article  CAS  Google Scholar 

  168. Cates, M.E., Desplat, J.C., Stansell, P., et al.: Physical and computational scaling issues in lattice Boltzmann simulations of binary fluid mixtures. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 363, 1917–1935 (2005). https://doi.org/10.1098/rsta.2005.1619

    Article  CAS  Google Scholar 

  169. Martys, N.S., Chen, H.D.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743–750 (1996)

    Article  CAS  Google Scholar 

  170. Hou, S.L., Shan, X.W., Zou, Q.S., et al.: Evaluation of two lattice Boltzmann models for multiphase flows. J. Comput. Phys. 138, 695–713 (1997). https://doi.org/10.1006/jcph.1997.5839

    Article  Google Scholar 

  171. Singh, M., Mohanty, K.K.: Permeability of spatially correlated porous media. Chem. Eng. Sci. 55, 5393–5403 (2000). https://doi.org/10.1016/s0009-2509(00)00157-3

    Article  CAS  Google Scholar 

  172. Hazi, G., Imre, A.R., Mayer, G., et al.: Lattice Boltzmann methods for two-phase flow modeling. Ann. Nucl. Energy 29, 1421–1453 (2002). https://doi.org/10.1016/s0306-4549(01)00115-3

    Article  CAS  Google Scholar 

  173. Kang, Q.J., Zhang, D.X., Chen, S.Y.: Displacement of a two-dimensional immiscible droplet in a channel. Phys. Fluids 14, 3203–3214 (2002). https://doi.org/10.1063/1.1499125

    Article  CAS  Google Scholar 

  174. Sukop, M.C., Or, D.: Lattice Boltzmann method for modeling liquid–vapor interface configurations in porous media. Water Resour. Res. 40, W01509 (2004). https://doi.org/10.1029/2003wr002333

    Article  Google Scholar 

  175. Inamuro, T., Ogata, T., Tajima, S., et al.: A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198, 628–644 (2004). https://doi.org/10.1016/j.jcp.2004.01.019

    Article  Google Scholar 

  176. Pan, C., Hilpert, M., Miller, C.T.: Lattice Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 40, W01501 (2004). https://doi.org/10.1029/2003wr002120

    Article  Google Scholar 

  177. Lee, T., Lin, C.L.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206, 16–47 (2005). https://doi.org/10.1016/j.jcp.2004.12.001

    Article  Google Scholar 

  178. Swift, M.R., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830–833 (1995)

    Article  CAS  PubMed  Google Scholar 

  179. Shan, X.W., Chen, H.D.: Simulation of nonideal gases and liquid-gas phase-transitions by the lattice Boltzmann-equation. Phys. Rev. E 49, 2941–2948 (1994)

    Article  CAS  Google Scholar 

  180. Luo, L.S.: Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases. Phys. Rev. E 62, 4982–4996 (2000). https://doi.org/10.1103/PhysRevE.62.4982

    Article  CAS  Google Scholar 

  181. Yuan, P., Schaefer, L.: Equations of state in a lattice Boltzmann model. Phys. Fluids 18, 042101 (2006). https://doi.org/10.1063/1.2187070

    Article  CAS  Google Scholar 

  182. Sukop, M.C., Or, D.: Lattice Boltzmann method for homogeneous and heterogeneous cavitation. Phys. Rev. E 71, 046703 (2005). https://doi.org/10.1103/PhysRevE.71.046703

    Article  CAS  Google Scholar 

  183. Dawson, S.P., Chen, S., Doolen, G.D.: Lattice Boltzmann computations for reaction-diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993)

    Article  CAS  Google Scholar 

  184. Lee, T., Lin, C.L., Chen, L.D.: A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame. J. Comput. Phys. 215, 133–152 (2006). https://doi.org/10.1016/j.jcp.2005.10.021

    Article  Google Scholar 

  185. Rothman, D.H., Keller, J.M.: Immiscible cellular-automaton fluids. J. Stat. Phys. 52, 1119–1127 (1988). https://doi.org/10.1007/bf01019743

    Article  Google Scholar 

  186. Gunstensen, A.K., Rothman, D.H., Zaleski, S., et al.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320–4327 (1991)

    Article  CAS  PubMed  Google Scholar 

  187. Grunau, D., Chen, S.Y., Eggert, K.: A Lattice Boltzmann model for multiphase fluid-flows. Phys. Fluids Fluid Dyn. 5, 2557–2562 (1993)

    Article  CAS  Google Scholar 

  188. Swift, M.R., Orlandini, E., Osborn, W.R., et al.: Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 54, 5041–5052 (1996)

    Article  CAS  Google Scholar 

  189. He, X.Y., Doolen, G.D.: Thermodynamic foundations of kinetic theory and Lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107, 309–328 (2002)

    Article  Google Scholar 

  190. Luo, L.S., Girimaji, S.S.: Lattice Boltzmann model for binary mixtures. Phys. Rev. E 66, 035301 (2002)

    Article  CAS  Google Scholar 

  191. Zhang, R.Y., He, X.Y., Chen, S.Y.: Interface and surface tension in incompressible lattice Boltzmann multiphase model. Comput. Phys. Commun. 129, 121–130 (2000)

    Article  CAS  Google Scholar 

  192. Joshi, A.S., Grew, K.N., Peracchio, A.A., et al.: Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode. J. Power Sources 164, 631–638 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.101

    Article  CAS  Google Scholar 

  193. Asinari, P., Quaglia, M.C., von Spakovsky, M.R., et al.: Direct numerical calculation of the kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice Boltzmann method. J. Power Sources 170, 359–375 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.074

    Article  CAS  Google Scholar 

  194. Koido, T., Furusawa, T., Moriyama, K.: An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell. J. Power Sources 175, 127–136 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.029

    Article  CAS  Google Scholar 

  195. Niu, X.D., Munekata, T., Hyodo, S.A., et al.: An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. J. Power Sources 172, 542–552 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.081

    Article  CAS  Google Scholar 

  196. Park, J., Matsubara, M., Li, X.: Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell. J. Power Sources 173, 404–414 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.021

    Article  CAS  Google Scholar 

  197. VanDoorrnaal, M.A., Pharoah, J.G.: Determination of permeability in fibrous porous media using the lattice Boltzmann method with application to PEM fuel cells. Int. J. Numer. Methods Fluids. 59, 75–89 (2009). https://doi.org/10.1002/fld.1811

    Article  Google Scholar 

  198. Hao, L., Cheng, P.: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. J. Power Sources 195, 3870–3881 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.125

    Article  CAS  Google Scholar 

  199. Wang, L.P., Afsharpoya, B.: Modeling fluid flow in fuel cells using the Lattice Boltzmann approach. Math. Comput. Simul. 72, 242–248 (2006). https://doi.org/10.1016/j.matcom.2006.05.038

    Article  Google Scholar 

  200. Hao, L., Cheng, P.: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel. J. Power Sources 190, 435–446 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.029

    Article  CAS  Google Scholar 

  201. Luan, H.B., Xu, H., Chen, L., et al.: Numerical illustrations of the coupling between the lattice Boltzmann method and finite-type macro-numerical methods. Numer. Heat Transf. Part B Fundam. 57, 147–171 (2010). https://doi.org/10.1080/15421400903579929

    Article  CAS  Google Scholar 

  202. Chen, L., Luan, H., Feng, Y., et al.: Coupling between finite volume method and lattice Boltzmann method and its application to fluid flow and mass transport in proton exchange membrane fuel cell. Int. J. Heat Mass Transf. 55, 3834–3848 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.020

    Article  CAS  Google Scholar 

  203. Feng, Y.T., Han, K., Owen, D.R.J.: Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues. Int. J. Numer. Methods Eng. 72, 1111–1134 (2007). https://doi.org/10.1002/nme.2114

    Article  Google Scholar 

  204. Young, W.M., Elcock, E.W.: Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc. Phys. Soc. Ldn. 89, 735–746 (1966). https://doi.org/10.1088/0370-1328/89/3/329

    Article  CAS  Google Scholar 

  205. Voter, A.F (ed).: Introduction to the kinetic Monte Carol method, in radiation efects in solids. In: The Kinetics of Radiation-Induced Point Defect Aggregation and Metallic Colloid Formation in Ionic Solids, pp.1–23. Springer, Netherland (2007)

  206. Fichthorn, K.A., Weinberg, W.H.: Theoretical foundations of dynamic Monte-Carlo simulations. J. Chem. Phys. 95, 1090–1096 (1991)

    Article  CAS  Google Scholar 

  207. Voter, A.F., Montalenti, F., Germann, T.C.: Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res. 32, 321–346 (2002)

    Article  CAS  Google Scholar 

  208. Battaile, C.C., Srolovitz, D.J.: Kinetic Monte Carlo simulation of chemical vapor deposition. Annu. Rev. Mater. Res. 32, 297–319 (2002)

    Article  CAS  Google Scholar 

  209. Battaile, C.C., Srolovitz, D.J., Butler, J.E.: A kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: application to diamond. J. Appl. Phys. 82, 6293–6300 (1997)

    Article  CAS  Google Scholar 

  210. Jensen, P.: Growth of nanostructures by cluster deposition: experiments and simple models. Rev. Mod. Phys. 71, 1695–1735 (1999)

    Article  CAS  Google Scholar 

  211. Luque, N.B., Leiva, E.P.M.: On the application of computer simulations to the study of electrochemical nanostructuring and surface phase formation. Electrochim. Acta 50, 3161–3178 (2005)

    Article  CAS  Google Scholar 

  212. Vvedensky, D.D.: Multiscale modelling of nanostructures. J. Physics-Condensed Matter. 16, R1537–R1576 (2004)

    Article  CAS  Google Scholar 

  213. Panagiotopoulos, A.Z.: Monte Carlo methods for phase equilibria of fluids. J. Phys. Condensed Matter. 12, R25–R52 (2000)

    Article  CAS  Google Scholar 

  214. Bieberle, A., Gauckler, L.J.: State-space modeling of the anodic SOFC system Ni, H(2)-H(2)O vertical bar YSZ. Solid State Ionics 146, 23–41 (2002). https://doi.org/10.1016/s0167-2738(01)01004-9

    Article  CAS  Google Scholar 

  215. Ioselevich, A., Kornyshev, A.A., Lehnert, W.: Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes: patterns of degradation. Solid State Ionics 124, 221–237 (1999). https://doi.org/10.1016/s0167-2738(99)00218-0

    Article  CAS  Google Scholar 

  216. Modak, A.U., Lusk, M.T.: Kinetic Monte Carlo simulation of a solid-oxide fuel cell: i. Open-circuit voltage and double layer structure. Solid State Ionics 176, 2181–2191 (2005)

    Article  CAS  Google Scholar 

  217. Pornprasertsuk, R., Ramanarayanan, P., Musgrave, C.B., et al.: Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98, 555 (2005). https://doi.org/10.1063/1.2135889

    Article  CAS  Google Scholar 

  218. Pornprasertsuk, R., Cheng, J., Huang, H., et al.: Electrochemical impedance analysis of solid oxide fuel cell electrolyte using kinetic Monte Carlo technique. Solid State Ionics 178, 195–205 (2007)

    Article  CAS  Google Scholar 

  219. Zhdanov, V.P.: Electrochemical reactions on catalyst particles with three-phase boundaries. Phys. Rev. E 67, 042601 (2003)

    Article  CAS  Google Scholar 

  220. Hu, R., Huang, S.P., Liu, Z.P., et al.: Water formation on Pt(111) surfaces at high temperatures studied by kinetic Monte Carlo simulations. Appl. Surf. Sci. 242, 353–361 (2005)

    Article  CAS  Google Scholar 

  221. Deem, M.W.: Recent contributions of statistical mechanics in chemical engineering. AIChE J. 44, 2569–2596 (1998)

    Article  CAS  Google Scholar 

  222. Raimondeau, S., Vlachos, D.G.: Recent developments on multiscale, hierarchical modeling of chemical reactors. Chem. Eng. J. 90, 3–23 (2002)

    Article  CAS  Google Scholar 

  223. Kofke, D.A.: Getting the most from molecular simulation. Mol. Phys. 102, 405–420 (2004)

    Article  CAS  Google Scholar 

  224. Zeng, Q.H., Yu, A.B., Lu, G.Q.: Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33, 191–269 (2008). https://doi.org/10.1016/j.progpolymsci.2007.09.002

    Article  CAS  Google Scholar 

  225. Ghoniem, N.M., Busso, E.P., Kioussis, N., et al.: Multiscale modelling of nanomechanics and micromechanics: an overview. Philos. Mag. 83, 3475–3528 (2003)

    Article  CAS  Google Scholar 

  226. Schmauder, S.: Computational mechanics. Annu. Rev. Mater. Res. 32, 437–465 (2002). https://doi.org/10.1146/annurev.matsci.32.103101.153157

    Article  CAS  Google Scholar 

  227. Liu, W.K., Karpov, E.G., Zhang, S., et al.: An introduction to computational nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 193, 1529–1578 (2004)

    Article  Google Scholar 

  228. Broadbelt, L.J., Snurr, R.Q.: Applications of molecular modeling in heterogeneous catalysis research. Appl. Catal. A General. 200, 23–46 (2000)

    Article  CAS  Google Scholar 

  229. Keil, F.J.: Modelling of phenomena within catalyst particles. Chem. Eng. Sci. 51, 1543–1567 (1996)

    Article  CAS  Google Scholar 

  230. Centi, G., Perathoner, S.: Novel catalyst design for multiphase reactions. Catal. Today 79, 3–13 (2003)

    Article  CAS  Google Scholar 

  231. Gummalla, M., Tsapatsis, M., Watkins, J.J., et al.: Multiscale hybrid modeling of film deposition within porous substrates. AIChE J. 50, 684–695 (2004)

    Article  CAS  Google Scholar 

  232. Braatz, R.D., Alkire, R.C., Seebauer, E., et al.: Perspectives on the design and control of multiscale systems. J. Process Control 16, 193–204 (2006)

    Article  CAS  Google Scholar 

  233. Cavallotti, C., DiStanislao, M., Moscatelli, D., et al.: Materials computation towards technological impact: the multiscale approach to thin films deposition. Electrochim. Acta 50, 4566–4575 (2005)

    Article  CAS  Google Scholar 

  234. Chung, P.S., So, D.S., Biegler, L.T., et al.: Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example. J. Nanoparticle Res. 14, 245–264 (2012). https://doi.org/10.1007/s11051-012-0853-1

    Article  CAS  Google Scholar 

  235. Poulikakos, D., Arcidiacono, S., Maruyama, S.: Molecular dynamics simulation in nanoscale heat transfer: a review. Microscale Thermophys. Eng. 7, 181–206 (2003)

    Article  Google Scholar 

  236. Glotzer, S.C., Paul, W.: Molecular and mesoscale simulation methods for polymer materials. Annu. Rev. Mater. Res. 32, 401–436 (2002)

    Article  CAS  Google Scholar 

  237. Franco, A.A., Schott, P., Jallut, C., et al.: A multi-scale dynamic mechanistic model for the transient analysis of PEFCs. Fuel Cells. 7, 99–117 (2007). https://doi.org/10.1002/fuce.200500204

    Article  CAS  Google Scholar 

  238. Li, J.H., Kwauk, M.: Exploring complex systems in chemical engineering: the multi-scale methodology. Chem. Eng. Sci. 58, 521–535 (2003)

    Article  CAS  Google Scholar 

  239. Wang, W., Lu, B.N., Zhang, N., et al.: A review of multiscale CFD for gas-solid CFB modeling. Int. J. Multiph. Flow 36, 109–118 (2010). https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.008

    Article  CAS  Google Scholar 

  240. Yadigaroglu, G.: Computational fluid dynamics for nuclear applications: from CFD to multi-scale CMFD. Nucl. Eng. Des. 235, 153–164 (2005)

    Article  CAS  Google Scholar 

  241. Charpentier, J.C., McKenna, T.F.: Managing complex systems: some trends for the future of chemical and process engineering. Chem. Eng. Sci. 59, 1617–1640 (2004)

    Article  CAS  Google Scholar 

  242. Lidorikis, E., Bachlechner, M.E., Kalia, R.K., et al.: Coupling atomistic and continuum length scales in heteroepitaxial systems: multiscale molecular-dynamics/finite-element simulations of strain relaxation in Si/Si3N4 nanopixels. Phys. Rev. B. 72, 115338 (2005)

    Article  CAS  Google Scholar 

  243. Nakano, A., Bachlechner, M.E., Kalia, R.K., et al.: Multiscale simulation of nanosystems. Comput. Sci. Eng. 3, 56–66 (2001)

    Article  CAS  Google Scholar 

  244. Nakano, A., Kalia, R.K., Nomura, K., et al.: A divide-and-conquer/cellular-decomposition framework for million-to-billion atom simulations of chemical reactions. Comput. Mater. Sci. 38, 642–652 (2007)

    Article  CAS  Google Scholar 

  245. Ghosh, S., Lee, K., Moorthy, S.: Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Comput. Methods Appl. Mech. Eng. 132, 63–116 (1996). https://doi.org/10.1016/0045-7825(95)00974-4

    Article  Google Scholar 

  246. Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155, 181–192 (1998). https://doi.org/10.1016/s0045-7825(97)00139-4

    Article  Google Scholar 

  247. Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54, 1235–1260 (2002). https://doi.org/10.1002/nme.541

    Article  Google Scholar 

  248. Wang, W., Chen, S., Li, J., et al.: Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 40, 4649–4658 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.027

    Article  CAS  Google Scholar 

  249. Thanasilp, S., Hunsom, M.: Effect of MEA fabrication techniques on the cell performance of Pt-Pd/C electrocatalyst for oxygen reduction in PEM fuel cell. Fuel 89, 3847–3852 (2010). https://doi.org/10.1016/j.fuel.2010.07.008

    Article  CAS  Google Scholar 

  250. Wengeler, R., Nirschl, H.: Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. J. Colloid Interface Sci. 306, 262–273 (2007). https://doi.org/10.1016/j.jcis.2006.10.065

    Article  CAS  PubMed  Google Scholar 

  251. Hartley, P.A., Parfitt, G.D.: Dispersion of powders in liquids.1. The contribution of the vanderwaals force to the cohesiveness of carbon-black powders. Langmuir 1, 651–657 (1985)

    Article  CAS  Google Scholar 

  252. Kralchevsky, P.A., Denkov, N.D.: Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6, 383–401 (2001)

    Article  CAS  Google Scholar 

  253. Uchida, M., Aoyama, Y., Eda, N., et al.: Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-Loaded carbon on the catalyst layer of polymer electrolyte fuel cells. J. Electrochem. Soc. 142, 4143–4149 (1995)

    Article  CAS  Google Scholar 

  254. Uchida, M., Fukuoka, Y., Sugawara, Y., et al.: Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells. J. Electrochem. Soc. 143, 2245–2252 (1996). https://doi.org/10.1149/1.1836988

    Article  CAS  Google Scholar 

  255. Soboleva, T., Zhao, X.S., Mallek, K., et al.: On the micro-, meso- and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl. Mater. Interfaces. 2, 375–384 (2010). https://doi.org/10.1021/am900600y

    Article  CAS  PubMed  Google Scholar 

  256. Siddique, N.A., Liu, F.: Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer. Electrochim. Acta 55, 5357–5366 (2010). https://doi.org/10.1016/j.electacta.2010.04.059

    Article  CAS  Google Scholar 

  257. Xiao, Y., Dou, M.L., Yuan, J.L., et al.: Fabrication process simulation of a PEM fuel cell catalyst layer and its microscopic structure characteristics. J. Electrochem. Soc. 159, B308–B314 (2012). https://doi.org/10.1149/2.064203jes

    Article  CAS  Google Scholar 

  258. Xiao, Y., Yuan, J.L., Sunden, B.: Process based large scale molecular dynamic simulation of a fuel cell catalyst layer. J. Electrochem. Soc. 159, B251–B258 (2012). https://doi.org/10.1149/2.028203jes

    Article  CAS  Google Scholar 

  259. Cosgrove, T.: Colloid Science: Principles, Methods and Applications. Blackwell, Oxford (2010)

    Google Scholar 

  260. Witten, T.A., Pincus, P.A.: Structured Fluids: Polymers, Colloids, Surfactants. Oxford University Press, New York (2010)

    Google Scholar 

  261. Gantt, J.A., Gatzke, E.P.: A stochastic technique for multidimensional granulation modeling. AIChE J. 52, 3067–3077 (2006). https://doi.org/10.1002/Aic.10911

    Article  CAS  Google Scholar 

  262. Schueler, R., Petermann, J., Schulte, K., et al.: Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. J. Appl. Polym. Sci. 63, 1741–1746 (1997)

    Article  CAS  Google Scholar 

  263. Zeidan, M., Jia, X.D., Williams, R.A., et al.: Simulation of aggregation with applications to soot laden lubricating fluids. Part. Part. Syst. Charact. 21, 473–482 (2005)

    Article  CAS  Google Scholar 

  264. Cheng, C.H., Malek, K., Sui, P.C., et al.: Effect of Pt nano-particle size on the microstructure of PEM fuel cell catalyst layers: insights from molecular dynamics simulations. Electrochim. Acta 55, 1588–1597 (2010). https://doi.org/10.1016/j.electacta.2009.10.030

    Article  CAS  Google Scholar 

  265. Liu, X.X., Martin, C.L., Delette, G., et al.: Microstructure of porous composite electrodes generated by the discrete element method. J. Power Sources 196, 2046–2054 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.033

    Article  CAS  Google Scholar 

  266. Suslick, K.S., Price, G.J.: Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326 (1999)

    Article  CAS  Google Scholar 

  267. Faeth, G.M., Hsiang, L.P., Wu, P.K.: Structure and breakup properties of sprays. Int. J. Multiph. Flow 21, 99–127 (1995)

    Article  CAS  Google Scholar 

  268. Lienhard, J.H., Day, J.B.: Breakup of Superheated Liquid Jets. J. Basic Eng. 92, 515–521 (1970)

    Article  Google Scholar 

  269. Sui, P.C.: Experimental and numerical investigations on the breakup and mixing processes during injection of supercritical fluid. Ph.D. Dissertation, The University of Iowa (1997)

  270. Eslamian, M., Ahmed, M., Ashgriz, N.: Modelling of nanoparticle formation during spray pyrolysis. Nanotechnology 17, 1674–1685 (2006). https://doi.org/10.1088/0957-4484/17/6/023

    Article  CAS  PubMed  Google Scholar 

  271. Gasteiger, H.A., Kocha, S.S., Sompalli, B., et al.: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005). https://doi.org/10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  272. Chai, G.S., Yoon, S.B., Yu, J.S., et al.: Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. J. Phys. Chem. B. 108, 7074–7079 (2004). https://doi.org/10.1021/Jp0370472

    Article  CAS  Google Scholar 

  273. Kim, H.T., You, D.J., Yoon, H.K., et al.: Cathode catalyst layer using supported Pt catalyst on ordered mesoporous carbon for direct methanol fuel cell. J. Power Sources 180, 724–732 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.081

    Article  CAS  Google Scholar 

  274. Job, N., Berthon-Fabry, S., Chatenet, M., et al.: Nanostructured carbons as platinum catalyst supports for proton exchange membrane fuel cell electrodes. Top. Catal. 52, 2117–2122 (2009). https://doi.org/10.1007/s11244-009-9384-0

    Article  CAS  Google Scholar 

  275. Seidel, Y.E., Lindstroem, R.W., Jusys, Z., et al.: Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155, K50–K58 (2008). https://doi.org/10.1149/1.2829886

    Article  CAS  Google Scholar 

  276. Schneider, A., Colmenares, L., Seidel, Y.E., et al.: Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys. Chem. Chem. Phys. 10, 1931–1943 (2008). https://doi.org/10.1039/b719775f

    Article  CAS  PubMed  Google Scholar 

  277. Gasda, M.D., Eisman, G.A., Gall, D.: Pore formation by in situ etching of nanorod PEM fuel cell electrodes. J. Electrochem. Soc. 157, B113–B117 (2010). https://doi.org/10.1149/1.3244589

    Article  CAS  Google Scholar 

  278. Chisaka, M., Daiguji, H.: Design of ordered-catalyst layers for polymer electrolyte membrane fuel cell cathodes. Electrochem. Commun. 8, 1304–1308 (2006). https://doi.org/10.1016/j.elecom.2006.06.009

    Article  CAS  Google Scholar 

  279. Du, C.Y., Cheng, X.Q., Yang, T., et al.: Numerical simulation of the ordered catalyst layer in cathode of proton exchange membrane fuel cells. Electrochem. Commun. 7, 1411–1416 (2005). https://doi.org/10.1016/j.elecom.2005.09.022

    Article  CAS  Google Scholar 

  280. Rao, S.M., Xing, Y.C.: Simulation of nanostructured electrodes for polymer electrolyte membrane fuel cells. J. Power Sources 185, 1094–1100 (2008). https://doi.org/10.1016/j.jpowsour.2008.07.062

    Article  CAS  Google Scholar 

  281. Lee, M.S., Chen, T.H., Lee, W.S., et al.: From microstructure to the development of water and major reaction sites inside the catalyst layer of the cathode of a proton exchange membrane fuel cell. J. Power Sources 196, 7411–7419 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.022

    Article  CAS  Google Scholar 

  282. Berning, T., Djilali, N.: A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J. Electrochem. Soc. 150, A1589–A1598 (2003). https://doi.org/10.1149/1.1621412

    Article  CAS  Google Scholar 

  283. Zheng, W., Kim, S.: The effects of catalyst layer microstructure and water saturation on the effective diffusivity in PEMFC. J. Electrochem. Soc. 165, F468–F478 (2018)

    Article  CAS  Google Scholar 

  284. Kulikovsky, A.A.: The voltage-current curve of a polymer electrolyte fuel cell: “Exact” and fitting equations. Electrochem. Commun. 4, 845–852 (2002). https://doi.org/10.1016/S1388-2481(02)00466-6

    Article  CAS  Google Scholar 

  285. Kulikovsky, A.A.: Catalyst layer performance in PEM fuel cell: analytical solutions. Electrocatalysis. 3, 132–138 (2012). https://doi.org/10.1007/s12678-012-0091-4

    Article  CAS  Google Scholar 

  286. Kulikovsky, A.A.: Approximate analytical solution to MHM equations for PEM fuel cell cathode performance. Electrochem. Commun. 77, 36–39 (2017). https://doi.org/10.1016/j.elecom.2017.02.007

    Article  CAS  Google Scholar 

  287. Boyer, C.C., Anthony, R.G., Appleby, A.J.: Design equations for optimized PEM fuel cell electrodes. J. Appl. Electrochem. 30, 777–786 (2000). https://doi.org/10.1023/A:1004088505222

    Article  CAS  Google Scholar 

  288. Xia, Z., Wang, Q., Eikerling, M., et al.: Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells. Can. J. Chem. 86, 657–667 (2008). https://doi.org/10.1139/v08-053

    Article  CAS  Google Scholar 

  289. He, W.S., Yi, J.S., VanNguyen, T.: Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields. AIChE J. 46, 2053–2064 (2000). https://doi.org/10.1002/aic.690461016

    Article  CAS  Google Scholar 

  290. Wang, Z.H., Wang, C.Y., Chen, K.S.: Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94, 40–50 (2001). https://doi.org/10.1016/s0378-7753(00)00662-5

    Article  CAS  Google Scholar 

  291. You, L.X., Liu, H.T.: A two-phase flow and transport model for the cathode of PEM fuel cells. Int. J. Heat Mass Transf. 45, 2277–2287 (2002). https://doi.org/10.1016/s0017-9310(01)00322-2

    Article  CAS  Google Scholar 

  292. Nam, J.H., Kaviany, M.: Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. Int. J. Heat Mass Transf. 46, 4595–4611 (2003). https://doi.org/10.1016/s0017-9310(03)00305-3

    Article  CAS  Google Scholar 

  293. STEHM, https://www.uvic.ca/research/advancedmicroscopy/

  294. Epting, W.K., Gelb, J., Litster, S.: Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale x-ray computed tomography. Adv. Funct. Mater. 22, 555–560 (2012). https://doi.org/10.1002/adfm.201101525

    Article  CAS  Google Scholar 

  295. Karan, K.: Assessment of transport-limited catalyst utilization for engineering of ultra-low Pt loading polymer electrolyte fuel cell anode. Electrochem. Commun. 9, 747–753 (2007). https://doi.org/10.1016/j.elecom.2006.10.057

    Article  CAS  Google Scholar 

  296. Krishna, R., Wesselingh, J.A.: Review article number 50—the Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52, 861–911 (1997). https://doi.org/10.1016/s0009-2509(96)00458-7

    Article  CAS  Google Scholar 

  297. Secanell, M., Karan, K., Suleman, A., Djilali, N.: Optimal design of ultra-low platinum PEMFC anode electrodes. J. Electrochem. Soc. 155, B125–B134 (2008). https://doi.org/10.1149/1.2806171

    Article  CAS  Google Scholar 

  298. Choo, M.-J., Oh, K.-H, Park, J.-K., Kim, H.-T.: Analysis of oxygen transport in cathode catalyst layer of low-Pt-loaded fuel cells. ChemElectroChem 2, 382–388 (2015). https://doi.org/10.1002/celc.2014023

    Article  CAS  Google Scholar 

  299. Srouji, A.K., Zheng, L.J., Dross, R., Aaron, D., Mench, M.M.: The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading. J. Power Sources 364, 92–100 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.036

    Article  CAS  Google Scholar 

  300. Darling, R.: A comparison of models for transport resistance in fuel-cell catalyst layers. J. Electrochem. Soc. 165, F1331–F1339 (2018). https://doi.org/10.1149/2.0881816jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support in part from Canada Research Chair, National Research Council Canada, Natural Science and Engineering Research Council of Canada, MITACS Centre of Excellences, and the CaRPE-FC research network. This work resulted in part from a Fellowship at the Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany. PCS also acknowledges the support of the National Natural Science Foundation of China (NSFC 21776226), National Key Research and Development Program of China (No. 2017YFB0102702),and the Hubei-100 Plan of China. The authors also benefited from many insightful discussions with Drs. Kyle Lange and Marc Secanell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ned Djilali.

Appendices

Appendix 1: Definition of Volume Averaging

The volume average of a variable ψ over a control volume, i.e. \( \left\langle {{\varvec{\psi}}_{k} } \right\rangle \), is defined as

$$ {\left\langle {{\varvec{\psi}}_{k}} \right\rangle} = \frac{1}{V}\mathop \int \nolimits_{{V_{k} }}^{a} {\varvec{\psi}}_{k} {\text{d}}V $$
(60)

Where Vk is the volume of phase k and V is the total control volume for averaging, i.e., \( V = \sum\limits_{k} {V_{k} } \).

The intrinsic volume average of variable ψ in phase k is

$$ {\left\langle {{\varvec{\psi}} _{k} } \right\rangle ^{k} } = \frac{1}{{V_{k} }}\mathop \int \nolimits_{{V_{k} }}^{a} {\varvec{\psi}}_{{k}} {\text{d}}V $$
(61)

The volume fraction of phase k is then \( \varepsilon_{k} = \frac{{V_{k} }}{V} \) and naturally, \( \sum\nolimits_{k} {\varepsilon_{k} } \).From (60) and (61), we have

$$ \left\langle {{\varvec{\psi}}_{k} } \right\rangle = \varepsilon_{k} \left\langle {{\varvec{\psi}}_{k} } \right\rangle^{k} $$
(62)

The fluctuating component, i.e., deviation due to the presence of other phases, is defined as

$$ {\varvec{\tilde{\psi }}}_{k} = {\varvec{\psi}}_{k} - \left\langle {{\varvec{\psi}}_{k} } \right\rangle^{k} $$
(63)

Following (61), the intrinsic volume average of the product for two variables becomes

$$ \left\langle {{\varvec{\psi}}_{k} \varphi_{k} } \right\rangle^{k} = \left\langle {{\varvec{\psi}}_{k} } \right\rangle^{k} \left\langle {\varphi_{k} } \right\rangle^{k} + \left\langle {\varvec{\tilde{\psi }}_{k} \tilde{\varphi }_{k} } \right\rangle^{k} $$
(64)

The volume average of a time derivative is

$$ {\left\langle {\frac{{\partial {\varvec{\psi}} _{k} }}{{\partial t}}} \right\rangle } = \frac{\partial }{\partial t}\left( {{\varvec{\varPsi}}_{k} } \right) - \frac{1}{V}\mathop \int \nolimits_{{A_{k} }}^{a} {\varvec{\varPsi}}_{k} \varvec{w}_{k} \varvec{n}_{k} {\text{d}}A $$
(65)

Where wk is the velocity of interface and nk is the normal vector of the interface.

The volume average of a gradient or divergent:

$$ \left\langle {\nabla {\varvec{\psi}} _{k} } \right\rangle = \nabla \left\langle {{\varvec{\psi}} _{k} } \right\rangle - \frac{1}{V}\mathop \int \nolimits_{{A_{k} }}^{a} {\varvec{\varPsi}}_{k} \varvec{n}_{\varvec{k}} {\text{d}}A $$
(66)

Appendix 2: Derivation of the Agglomerate Model and the PDL Model with the Volume Averaging Method

The following discussion is continued from Chapter 2.1.

The agglomerate model and the PDL model are similar in that there exists a difference of oxygen concentration between the bulk pore phase and the catalyst surface. For both models, we can derive from the VAM equations by making further assumptions.

Assumption 7

Zero net flux of oxygen through the ionomer phase in the REV. This eliminates the first term on the LHS of (6), i.e. \( \nabla \cdot \left( {\left\langle {\varvec{j}_{{{\text{O}}_{2} }} } \right\rangle_{\text{m}} } \right) = 0 \). This implies that oxygen consumed on the CPt surface is solely from the pore phase. This may not be valid under circumstances, e.g. when the pore phase is flooded, in which case oxygen could still diffuse through the ionomer pathway.

Adding (5) and (6), which cancels out the fluxes across interface Apm, we have:

$$ \nabla \cdot \left( {\left\langle {\varvec{j}_{{{\text{O}}_{2} }} } \right\rangle_{\text{p}} } \right) + \frac{1}{V}\mathop \int \nolimits_{{A_{\text{mc}} }}^{a} \varvec{j}_{{{\text{O}}_{2} }} \cdot \varvec{n}_{\text{ms}} {\text{d}}A = 0 $$
(67)

Equation (67) simply states that the net flux of oxygen gas through the REV equals the consumption of oxygen (in ionomer) at the CPt surface.

2.1 Model closure: Mass Transfer in Pore Phase

Next we can provide model closure based on (67) with oxygen as an example. The mass diffusion in porous media is often modeled with an effective diffusivity:

$$ \langle \varvec{j}_{{{\text{O}}_{2} }} \rangle_{\text{p}} = - \rho D_{{{\text{O}}_{2} }}^{\text{eff}} \nabla \varvec{Y}_{{{\text{O}}_{2} }} $$
(68)

The effective diffusivity can be measured by experiment or computed by microscale models, e.g. [84, 97], with zero oxygen source, i.e.

$$ \nabla \cdot \left( {\varvec{j}_{k} } \right) = - \nabla \cdot \left( {\rho D_{{{\text{O}}_{2} }}^{\text{eff}} \nabla \varvec{Y}_{{{\text{O}}_{2} }} } \right) $$
(69)

Both Fickian diffusion and Knudsen diffusion can be formulated. It is noted that Assumption 3 can be relaxed and the diffusive mass flux can then be modeled according to the Stefan–Maxwell formulation [296].

2.2 Model Closure: Reactions and Phase Equilibrium

The model closure for the diffusion-reaction processes in the CL is the major difference among the aforementioned macroscopic models. From (67) and (68), the transport of gas species can be expressed in this form:

$$ - \nabla \cdot \left( {D_{i}^{\text{eff}} \nabla \varvec{c}_{i} } \right) = \dot{m}_{i} $$
(70)

Assumption #8

Phase equilibrium at the pore-ionomer interface.

The concentration of gas species on the ionomer surface can be related to that in the pore phase by the Henry’s law, which means the chemical potential of oxygen and that in the ionomer phase are the same and phase equilibrium is established. Another assumption of chemical equilibrium on the reaction site can be made to describe the balance of surface coverage, e.g. [73].

Assumption #9

First-order reaction for ORR

A first-order reaction for the oxygen reduction reaction can be assumed:

$$ \dot{m} = - k \cdot c(X) $$
(71)

For the ORR the parameter k takes the form of either the Butler–Volmer equation or the Tafel equation. Assuming a constant parameter k in (71) and a 1D configuration, Fig. 16, with boundary conditions of

$$ \begin{aligned} & c = c_{0} \;{\text{at}}\;X = 0,{\text{and}} \\ c = c_{1} \;{\text{at}}\;X = L \\ \end{aligned} $$

the solution of (70) is

$$ c\left( x \right) = \frac{{c_{1} - c_{0} {\text{e}}^{{ - \lambda {\text{L}}}} }}{{{\text{e}}^{{\lambda {\text{L}}}} - {\text{e}}^{{ - \lambda {\text{L}}}} }}{\text{e}}^{\lambda x} + \frac{{c_{0} {\text{e}}^{{\lambda {\text{L}}}} - c_{1} }}{{{\text{e}}^{{\lambda {\text{L}}}} - {\text{e}}^{{ - \lambda {\text{L}}}} }}{\text{e}}^{ - \lambda x} $$
(72)

where

$$ \lambda = \sqrt {\frac{k}{D}} $$
(73)
Fig. 16
figure 16

Illustration of the coordinate and dimensions of the CL and the GDL

For the macro-homogeneous model, the effective diffusivity is the mass diffusivity of gas species in the ionomer phase. For the agglomerate model and the pore-diffusion limited model, the effective diffusivity of gas species in the pore is used. For the latter two models, which assume that there exists certain mass diffusion obstacles between the pore and the reaction site, further assumptions can be made about the interface condition and the reaction term in (70).

Consider a configuration that the ionomer phase in the REV is characterized by an equivalent thickness, or the inversed specific surface area (V/S), where V is the volume of the ionomer in the REV and S is the surface area of carbon/ionomer interfaces. This surface area can be later extended to the area of the catalyst if discrete distribution of catalysts on the carbon surface is assumed. The concentration to be used for (71) is then the concentration on the surface of catalyst, c*(x) as opposed to that in the “bulk”, c(x), i.e.,

$$ \dot{m} = - k \cdot c^{*} (X) $$
(74)

The local reaction can then be related to diffusion in ionomer by assuming a local flux as

$$ \dot{m} = - A\frac{{D_{m} (c - c^{*} )}}{\delta } $$
(75)

where A is the surface area of the catalyst, δ is the characteristic thickness of the ionomer.

Equating (74) & (75) and rewriting for c*, we have

$$ c^{*} = \frac{c}{{1 - \frac{k\delta }{{AD_{m} }}}} $$
(76)

Substituting (76) into (74) and (75), we have

$$ \lambda = \sqrt {\frac{k}{{D\left( {1 - \frac{k\delta }{{AD_{m} }}} \right)}}} $$
(77)

The agglomerate model in essence considers two mass transfer resistances along the transport pathway, i.e., mass diffusion through the ionomer coating and through the agglomerate. The final flux (oxygen consumption) is then related to oxygen concentration at the agglomerate surface by two resistors in series, i.e.

$$ R_{\text{diff}} = \frac{\delta }{{D_{m} }}, $$
(78)

and

$$ R_{\text{reac}} = k $$
(79)

The effective resistance (diffusivity) through the ionomer is in general a function of ionomer thickness, oxygen diffusivity, etc. The effective resistance for the transport inside the agglomerate is a function of the geometrical form of the agglomerate and the relative strength of diffusion versus the reaction rate, i.e. the Damköhler number.

As the reaction takes place in the reaction zone, concentration varies along the penetration direction and a gradient of concentration, therefore a deviation from the highest reaction rate, is formed. An effectiveness factor η can be introduced to relate the actual flux (oxygen consumption) into the agglomerate and the flux in the absence of mass transfer through it. In the catalyst industry the effectiveness factor is often expressed as a function of the Thiele modulus, which is a function of kinetics, diffusivity, catalyst pellet geometry, etc. For instance, effectiveness factor for a sphere can be expressed as

$$ \eta = \frac{\delta }{{\sqrt {An_{0} } }} \cdot \left[ {\frac{1}{{\tan (3\sqrt {An}_{0} )}} - \frac{1}{{3\sqrt {An}_{0} }}} \right], $$
(80)

where An0 is the zeroth order of the Aris number, or a modified Thiele modulus. The idea of a structure-based model is then to establish a rational approach to determine the Thiele modulus (or equivalent formula) that represents the reconstructed microstructure and transport/kinetic parameters for a given catalyst layer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, PC., Zhu, X. & Djilali, N. Modeling of PEM Fuel Cell Catalyst Layers: Status and Outlook. Electrochem. Energ. Rev. 2, 428–466 (2019). https://doi.org/10.1007/s41918-019-00043-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00043-5

Keywords

Navigation