Skip to main content

Advertisement

Log in

Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Developments in nanotechnology have led to innovative progress and converging technologies in engineering and science. These demand novel methodologies that enable efficient communications from the nanoscale all the way to decision-making criteria for actual production systems. In this paper, we discuss the convergence of nanotechnology and novel multi-scale modeling paradigms by using the fuel cell system as a benchmark example. This approach includes complex multi-phenomena at different time and length scales along with the introduction of an optimization framework for application-driven nanotechnology research trends. The modeling paradigm introduced here covers the novel holistic integration from atomistic/molecular phenomena to meso/continuum scales. System optimization is also discussed with respect to the reduced order parameters for a coarse-graining procedure in multi-scale model integration as well as system design. The development of a hierarchical multi-scale paradigm consolidates the theoretical analysis and enables large-scale decision-making of process level design, based on first-principles, and therefore promotes the convergence of nanotechnology to sustainable energy technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agarwal A, Biegler LT, Zitney SE (2009) Simulation and optimization of pressure swing adsorption systems using reduced-order modeling. Ind Eng Chem Res 48:2327–2343

    Article  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1996) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  • Baxter SF, Battaglia VS, White RE (1999) Methanol fuel cell model: anode. J Electrochem Soc 146:437–447

    Article  CAS  Google Scholar 

  • Biegler LT, Grossman IE, Westerberg AW (1997) Systematic methods of chemical process design. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Broughton JQ, Abraham FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B 60:2391–2403

    Article  CAS  Google Scholar 

  • Cancelliere A, Chang C, Foti E, Rothman DH, Succi S (1990) The permeability of a random medium: comparison of simulation with theory. Phys Fluids A 2:2085–2088

    Article  CAS  Google Scholar 

  • Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  Google Scholar 

  • Choe YK, Tsuchida E, Ikeshoji T, Ohira A, Kidena K (2010) An ab initio modeling study on a modeled hydrated polymer electrolyte membrane, sulfonated polyethersulfone (SPES). J Phys Chem B 114:2411–2421

    Article  CAS  Google Scholar 

  • Chung PS, Smith R, Vemuri SH, Jhon YI, Tak K, Moon I, Biegler LT, Jhon MS (2012) Multi-scale/multi-physical modeling in head/disk interface of magnetic data storage. J Appl Phys 111:07B712

    Google Scholar 

  • Csanyi G, Albaret T, Payne MC, De Vita A (2004) “Learn on the fly”: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys Rev Lett 93:175503

    Article  Google Scholar 

  • Dalton LR (2009) Theory-inspired development of organic electro-optic materials. Thin Solid Films 518:428–431

    Article  CAS  Google Scholar 

  • Delgado-Buscalioni R, Coveney PV (2003) Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. Phys Rev E 67:046704

    Article  CAS  Google Scholar 

  • Delle Site L, Kremer K (2005) Multiscale modeling of polymers on a surface: from ab initio density functional calculations of molecular adsorption to large scale properties. Int J Quantum Chem 101:733–739

    Article  CAS  Google Scholar 

  • Dohle H, Divisek J, Jung R (2000) Process engineering of the direct methanol fuel cell. J Power Sour 86:469–477

    Article  CAS  Google Scholar 

  • Doi M (2003) OCTA (Open computational tool for advanced material technology). Macromol Symp 195:101–108

    Article  CAS  Google Scholar 

  • Ergun S (1952) Fluid flow through packed column. Chem Eng Prog 48:89–94

    CAS  Google Scholar 

  • Falk M (1980) An infrared study of water in perfluorosulfonate (Nafion) membranes. Can J Chem 58:1495–1501

    Article  CAS  Google Scholar 

  • Faller R (2004) Automatic coarse graining of polymers. Polymer 45:3869–3876

    Article  CAS  Google Scholar 

  • Flekkoy EG, Wagner G, Feder J (2000) Hybrid model for combined particle and continuum dynamics. Europhys Lett 52:271–276

    Article  CAS  Google Scholar 

  • Franco AA, Passot S, Fugier P, Anglade C, Billy E, Guetaz L, Guillet N, Vito ED, Mailley S (2009) PtxCoy catalysts degradation in PEFC environments: mechanistic insights I. Multiscale modeling. J Electrochem Soc 156:B410–B424

    Article  CAS  Google Scholar 

  • Ghai SS, Chung PS, Kim WT, Amon CH, Jhon MS (2006) Thermal modeling of a multilayered film via Taylor series expansion- and least squares-based-lattice Boltzmann method. IEEE Trans Magn 42:2474–2476

    Article  Google Scholar 

  • Gierke TD, Munn GE, Wilson FC (1981) The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J Polym Sci 19:1687–1704

    CAS  Google Scholar 

  • Glotzer SC, Paul W (2002) Molecular and mesoscale simulation of polymers. Annu Rev Mater Res 32:401–436

    Article  CAS  Google Scholar 

  • Goddard W III, Merinov B, Van Duin A, Jacon T, Blanco M, Molinero V, Jang SS, Jang YH (2006) Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes. Mol Simulat 32:251–268

    Article  CAS  Google Scholar 

  • Grest GS (1996) Grafted polymer brushes in polymeric matrices. J Chem Phys 105:5532–5541

    Article  CAS  Google Scholar 

  • Guo ZL, Zhao TS (2002) Lattice Boltzmann model for incompressible flows through porous media. Phys Rev E 66:036304

    Article  Google Scholar 

  • Habenicht BF, Paddison SJ, Tuckerman ME (2010) The effects of the hydrophobic environment on proton mobility in perfluorosulfonic acid systems: an ab initio molecular dynamics study. J Mat Chem 20:6342–6351

    Article  CAS  Google Scholar 

  • Hadjiconstantinou NG (1999) Combining atomistic and continuum simulations of contact-line motion. Phys Rev E 59:2475–2478

    Article  Google Scholar 

  • Haubold HG, Vad T, Jungbluth H, Hiller P (2001) Nanostructure of NAFION: a SAXS study. Electrochim Acta 46:1559–1563

    Article  CAS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  • Iuchi S, Izvekov S, Voth GA (2007) Are many-body electronic polarization effects important in liquid water? J Chem Phys 126:124505

    Article  Google Scholar 

  • Izvekov S, Voth GA (2005a) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473

    Article  CAS  Google Scholar 

  • Izvekov S, Voth GA (2005b) Multiscale coarse graining of liquid-state systems. J Chem Phys 123:134105–134117

    Article  Google Scholar 

  • Jensen F (1989) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  • Jinnouchi R, Okazaki K (2003) Molecular dynamics study of transport phenomena inperfluorosulfonate ionomer membranes for polymer electrolyte fuel cell. J Electrochem Soc 150:E66–E73

    Article  CAS  Google Scholar 

  • Kim WT, Jhon, Zhou Y, Staroselsky I, Chen H (2005) Nanoscale air bearing modeling via lattice Boltzmann method. J Appl Phys 97:10P304

    Article  Google Scholar 

  • Komarov PV, Veselov IN, Chu PP, Khalatur PG, Khokhlov AR (2010) Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(Ether Ether Ketone). Chem Phys Lett 487:291–296

    Article  CAS  Google Scholar 

  • Krishnan M, Verma A, Balasubramanian S (2001) Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites. Proc Indian Acad Sci (Chem Sci) 113:579–586

    Article  CAS  Google Scholar 

  • Laio A, VandeVondele J, Röthlisberger U (2002) A Hamiltonian electrostatic coupling scheme for hybrid car-parrinello simulations. J Chem Phys 116:6941–6948

    Article  CAS  Google Scholar 

  • Lang Y-D, Malacina A, Biegler LT, Munteanu S, Madsen JI, Zitney SE (2009) Reduced order model based on principal component analysis for process simulation and optimization. Energy Fuel 23:1695–1706

    Article  CAS  Google Scholar 

  • Lang Y-D, Zitney SE, Biegler LT (2011) Optimization of IGCC processes with reduced order CFD models. Comp Chem Eng 35:1705–1717

    Article  CAS  Google Scholar 

  • Leach AR (2001) Molecular modeling: principles and applications. Longman, Harlow

  • Li J, Liao D, Yip S (1998) Coupling continuum to molecular-dynamics simulation: reflecting particle method and the field estimator. Phys Rev E 57:7259–7267

    Article  CAS  Google Scholar 

  • Mei R, Shyy W, Yu D, Luo L (2000) Lattice Boltzmann method for 3-D flows with curved boundary. J Comp Phys 161:680–699

    Article  CAS  Google Scholar 

  • Mench MM, Wang CY, Thynell S (2004) Direct dimethyl ether polymer electrolyte fuel cells for portable applications. J Electrochem Soc 151:A144–A150

    Article  CAS  Google Scholar 

  • Neri M, Anselmi C, Cascella M, Maritan A, Carloni P (2005) Coarse-grained model of proteins incorporating atomistic detail of the active site. Phys Rev Lett 95:218102

    Article  Google Scholar 

  • Nithiarasu P, Seetharamu KN, Sundararajan T (1997) Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Tran 40:3955

    Article  CAS  Google Scholar 

  • O’Brien CP, Miller JB, Morreale BD, Gellman AJ (2011) The kinetics of H2-D2 exchange over Pd, Cu, and PdCu surfaces. J Phys Chem C 115:24221–24230

    Article  Google Scholar 

  • O’Connell ST, Thompson PA (1995) Molecular dynamics–continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 52:R5792–R5795

    Article  Google Scholar 

  • Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford University, New York

    Google Scholar 

  • Porat Z, Fryer JR, Huxham M, Rubinstein I (1995) Electron microscopy investigation of the microstructure of nafion films. J Phys Chem 99:4667–4671

    Article  CAS  Google Scholar 

  • Rafii-Tabar H, Hua L, Cross M (1998) A multi-scale atomistic-continuum modeling of crack propagation in a two-dimensional macroscopic plate. J Phys Condens Matter 10:2375–2387

    Article  CAS  Google Scholar 

  • Ren X, Springer T, Zawodzinski T, Gottesfeld S (2000) Methanol transport through the Nafion membranes. Electro-osmotic drag effects on potential step measurements. J Electrochem Soc 147:466–474

    Article  CAS  Google Scholar 

  • Roche EJ, Pineri M, Duplessix R, Levelut AM (1981) Small-angle scattering studies of nafion membranes. J Polym Sci Polym Phys Ed 19:1–11

    Article  CAS  Google Scholar 

  • Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020. Springer, Berlin

    Book  Google Scholar 

  • Seminario JM (1996) Calculation of intramolecular force fields from second-derivative tensors. Int J Quantum Chem 60:1271–1277

    Article  Google Scholar 

  • Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sust Energy Rev 13:2373–2384

    Article  CAS  Google Scholar 

  • Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048

    Article  CAS  Google Scholar 

  • Smirnova JA, Zhigilei LV, Garrison BJ (1999) A combined molecular dynamics and finite element method technique applied to laser induced pressure wave propagation. Comput Phys Commun 118:11–16

    Article  CAS  Google Scholar 

  • Theodorou DN (2005) Hierarchical modeling of amorphous polymers. Comput Phys Commun 169:82–88

    Article  CAS  Google Scholar 

  • Ulherr A, Theodorou DN (1998) Hierarchical simulation approach to structure and dynamics of polymers. Curr Opin Solid State Mater Sci 3:544–551

    Article  Google Scholar 

  • Vafai K (1984) Convective flow and heat transfer in variable porosity media. J Fluid Mech 147:233–259

    Article  Google Scholar 

  • Villa E, Balaeff A, Mahadevan L, Schulten K (2004) Multiscale method for simulating protein-DNA complexes. Multiscale Model Sim 2:527–553

    Article  CAS  Google Scholar 

  • Wang YT, Izvekov S, Yan TY, Voth GA (2006) Multiscale coarse-graining of ionic liquids. J Phys Chem B 110:3564–3575

    Article  CAS  Google Scholar 

  • Xu YS, Liu Y, Zu XZ, Huang GX (2006) Lattice Boltzmann simulation of molten carbonate fuel cell performance. J Electrochem Soc 153:A607–A613

    Article  CAS  Google Scholar 

  • Zhou J, Thorpe IF, Izvekov S, Voth GA (2007) Coarse-grained peptide modeling using a systematic multiscale approach. Biophys J 92:4289–4303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Korea Science & Engineering Foundation through the WCU Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung S. Jhon.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, P.S., So, D.S., Biegler, L.T. et al. Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example. J Nanopart Res 14, 853 (2012). https://doi.org/10.1007/s11051-012-0853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0853-1

Keywords

Navigation