Skip to main content

Advertisement

Log in

Toward Better Lithium–Sulfur Batteries: Functional Non-aqueous Liquid Electrolytes

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Having been extensively studied in the past five decades, lithium–sulfur (Li–S) batteries possess a high theoretical energy density (~ 2600 Wh kg−1), offering the potential to power advanced twenty-first-century technologies such as electric vehicles and drones. However, a surprisingly complex engineering challenge remains in the application of these batteries: the identification of appropriate electrolytes that are compatible with both sulfur cathodes and lithium metal anodes. Non-aqueous liquid electrolytes, typically consisting of a lithium salt dissolved in an organic solvent, cannot themselves demonstrate effective electrochemical performances. Researchers have found that functional electrolytes offer unique possibilities to engineer the surface chemistries of sulfur cathodes and lithium anodes to enable long-term cycling. In this article, recent progresses in the development of functional non-aqueous liquid electrolytes in Li–S batteries are reviewed, including novel co-solvent solutions, lithium salts, additives, redox mediators, and ionic liquids. Characterization techniques and interpretations are cited to elucidate the effects of these components on the kinetics of sulfur redox reactions, lithium passivation, and cell performance. The information presented and the studies highlighted in this review will provide guidance for future optimized electrolyte designs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blomgren, G.E.: The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017)

    CAS  Google Scholar 

  2. Etacheri, V., Marom, R., Elazari, R., et al.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    CAS  Google Scholar 

  3. Nitta, N., Wu, F., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)

    CAS  Google Scholar 

  4. Bruce, P., Freunberger, S.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–30 (2012)

    CAS  Google Scholar 

  5. Manthiram, A., Fu, Y., Chung, S.H., et al.: Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)

    CAS  PubMed  Google Scholar 

  6. Pang, Q., Liang, X., Kwok, C.Y., et al.: Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)

    CAS  Google Scholar 

  7. Cheon, S.E., Cho, J.H., Ko, K.S., et al.: Structural factors of sulfur cathodes with poly(ethylene oxide) binder for performance of rechargeable lithium sulfur batteries. J. Electrochem. Soc. 149, A1437 (2002)

    CAS  Google Scholar 

  8. Cheon, S.E., Choi, S.S., Han, J.S., et al.: Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J. Electrochem. Soc. 151, A2067–A2073 (2004)

    CAS  Google Scholar 

  9. Song, J., Xu, T., Gordin, M.L., et al.: Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014)

    CAS  Google Scholar 

  10. Yin, Y.X., Xin, S., Guo, Y.G., et al.: Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. Engl. 52, 13186–13200 (2013)

    CAS  PubMed  Google Scholar 

  11. Akridge, J.: Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics 175, 243–245 (2004)

    CAS  Google Scholar 

  12. Mikhaylik, Y.V., Akridge, J.R.: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004)

    CAS  Google Scholar 

  13. Yu, X., Pan, H., Zhou, Y., et al.: Direct observation of the redistribution of sulfur and polysufides in Li–S batteries during the first cycle by in situ X-ray fluorescence microscopy. Adv. Energy Mater. 5, 1500072 (2015)

    Google Scholar 

  14. Lu, Y.C., He, Q., Gasteiger, H.A.: Probing the lithium–sulfur redox reactions: a rotating-ring disk electrode study. J. Phys. Chem. C 118, 5733–5741 (2014)

    CAS  Google Scholar 

  15. Barchasz, C., Molton, F., Duboc, C., et al.: Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84, 3973–3980 (2012)

    CAS  PubMed  Google Scholar 

  16. Hagen, M., Schiffels, P., Hammer, M., et al.: In-situ Raman investigation of polysulfide formation in Li–S cells. J. Electrochem. Soc. 160, A1205–A1214 (2013)

    CAS  Google Scholar 

  17. See, K.A., Leskes, M., Griffin, J.M., et al.: Ab initio structure search and in situ 7Li NMR studies of discharge products in the Li–S battery system. J. Am. Chem. Soc. 136, 16368–16377 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pascal, T.A., Wujcik, K.H., Velasco-Velez, J., et al.: X-ray absorption spectra of dissolved polysulfides in lithium–sulfur batteries from first-principles. J. Phys. Chem. Lett. 5, 1547–1551 (2014)

    CAS  PubMed  Google Scholar 

  19. Wang, Q., Zheng, J., Walter, E., Zuo, P.: Direct observation of sulfur radicals as reaction media in lithium sulfur batteries. J. Electrochem. Soc. 162, A474–A478 (2015)

    CAS  Google Scholar 

  20. Zou, Q., Lu, Y.C.: Solvent-dictated lithium sulfur redox reactions: An operando UV-vis spectroscopic study. J Phys Chem Lett. 7, 1518–1525 (2016)

    CAS  PubMed  Google Scholar 

  21. Cuisinier, M., Hart, C., Balasubramanian, M., et al.: Radical or not radical: revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 5, 1401801 (2015)

    Google Scholar 

  22. Xu, R., Belharouak, I., Zhang, X., et al.: Insight into sulfur reactions in Li–S batteries. ACS Appl. Mater. Interfaces. 6, 21938–21945 (2014)

    CAS  PubMed  Google Scholar 

  23. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    CAS  PubMed  Google Scholar 

  24. Guo, Y., Li, H., Zhai, T.: Reviving lithium–metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1–25 (2017)

    Google Scholar 

  25. Yamin, H., Gorenshtein, A., Penciner, J., et al.: Lithium sulfur battery oxidation/reduction mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 135, 1045–1048 (1988)

    CAS  Google Scholar 

  26. Bieker, G., Wellmann, J., Kolek, M., et al.: Influence of cations in lithium and magnesium polysulphide solutions: dependence of the solvent chemistry. Phys. Chem. Chem. Phys. 19, 11152–11162 (2017)

    CAS  PubMed  Google Scholar 

  27. Barchasz, C., Leprêtre, J.C., Patoux, S., et al.: Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochim. Acta 89, 737–743 (2013)

    CAS  Google Scholar 

  28. Schneider, H., Gollub, C., Weiss, T., et al.: On the electrode potentials in lithium–sulfur batteries and their solvent-dependence. J. Electrochem. Soc. 161, A1399–A1406 (2014)

    CAS  Google Scholar 

  29. Pan, H., Wei, X., Henderson, W.A., et al.: On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries. Adv. Energy Mater. 5, 1–7 (2015)

    Google Scholar 

  30. Fan, F.Y., Pan, M.S., Lau, K.C., et al.: Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium–sulfur batteries. J. Electrochem. Soc. 163, A3111–A3116 (2016)

    CAS  Google Scholar 

  31. Pan, H., Chen, J., Cao, R., et al.: Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy. 2, 813–820 (2017)

    CAS  Google Scholar 

  32. Qu, C., Chen, Y., Yang, X., et al.: LiNO3-free electrolyte for Li–S battery: a solvent of choice with low Ksp of polysulfide and low dendrite of lithium. Nano Energy 39, 262–272 (2017)

    CAS  Google Scholar 

  33. Kim, S., Jung, Y., Lim, H.S.: The effect of solvent component on the discharge performance of Lithium–sulfur cell containing various organic electrolytes. Electrochim. Acta 50, 889–892 (2004)

    CAS  Google Scholar 

  34. Barchasz, C., Leprêtre, J.C., Patoux, S., et al.: Revisiting TEGDME/DIOX binary electrolytes for lithium/sulfur batteries: importance of solvation ability and additives. J. Electrochem. Soc. 160, A430–A436 (2013)

    CAS  Google Scholar 

  35. Aurbach, D., Pollak, E., Elazari, R., et al.: On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694 (2009)

    CAS  Google Scholar 

  36. Huang, F., Ma, G., Wen, Z., et al.: Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J. Mater. Chem. A. 6, 1612–1620 (2018)

    CAS  Google Scholar 

  37. Azimi, N., Weng, W., Takoudis, C., et al.: Improved performance of lithium–sulfur battery with fluorinated electrolyte. Electrochem. Commun. 37, 96–99 (2013)

    CAS  Google Scholar 

  38. Zu, C., Azimi, N., Zhang, Z., et al.: Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte. J. Mater. Chem. A. 3, 14864–14870 (2015)

    CAS  Google Scholar 

  39. Azimi, N., Xue, Z., Bloom, I., Gordin, M.L.: Understanding the effect of a fluorinated ether on the performance of lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 7, 9169–9177 (2015)

    CAS  PubMed  Google Scholar 

  40. Chen, S., Yu, Z., Gordin, M.L., et al.: A fluorinated ether electrolyte enabled high performance prelithiated graphite/sulfur batteries. ACS Appl. Mater. Interfaces 9, 6959–6966 (2017)

    CAS  PubMed  Google Scholar 

  41. Gordin, M.L., Dai, F., Chen, S., et al.: Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 6, 8006–8010 (2014)

    CAS  PubMed  Google Scholar 

  42. Talian, S.D., Jeschke, S., Vizintin, A., et al.: Fluorinated ether based electrolyte for high-energy lithium–sulfur batteries: Li+ solvation role behind reduced polysulfide solubility. Chem. Mater. 29, 10037–10044 (2017)

    Google Scholar 

  43. Gu, S., Qian, R., Jin, J., et al.: Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries. Phys. Chem. Chem. Phys. 18, 29293–29299 (2016)

    CAS  PubMed  Google Scholar 

  44. Yim, T., Park, M.S., Yu, J.S., et al.: Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 107, 454–460 (2013)

    CAS  Google Scholar 

  45. Liang, X., Wen, Z., Liu, Y., et al.: Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sour. 196, 9839–9843 (2011)

    CAS  Google Scholar 

  46. Zhang, S.S., Read, J.A.: A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J. Power Sour. 200, 77–82 (2012)

    CAS  Google Scholar 

  47. Xiong, S., Xie, K., Diao, Y., et al.: Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J. Power Sour. 246, 840–845 (2014)

    CAS  Google Scholar 

  48. Cheng, X.B., Yan, C., Chen, X., et al.: Implantable solid electrolyte interphase in lithium–metal batteries. Chemistry 2, 258–270 (2017)

    CAS  Google Scholar 

  49. Li, W., Yao, H., Yan, K., et al.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015)

    PubMed  Google Scholar 

  50. Diao, Y., Xie, K., Xiong, S., et al.: Shuttle phenomenon the irreversible oxidation mechanism of sulfur active material in Li–S battery. J. Power Sour. 235, 181–186 (2013)

    CAS  Google Scholar 

  51. Zhang, S.S.: Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012)

    CAS  Google Scholar 

  52. Rosenman, A., Elazari, R., Salitra, G., et al.: The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li–S battery systems. J. Electrochem. Soc. 162, A470–A473 (2015)

    CAS  Google Scholar 

  53. Wu, F., Lee, J.T., Nitta, N., et al.: Lithium iodide as a promising electrolyte additive for lithium–sulfur batteries: mechanisms of performance enhancement. Adv. Mater. 27, 101–108 (2015)

    CAS  PubMed  Google Scholar 

  54. Jozwiuk, A., Berkes, B.B., Weiß, T., et al.: The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries. Energy Environ. Sci. 9, 2603–2608 (2016)

    CAS  Google Scholar 

  55. Xiong, S., Xie, K., Diao, Y., et al.: Oxidation process of polysulfides in charge process for lithium–sulfur batteries. Ionics 18, 867–872 (2012)

    CAS  Google Scholar 

  56. Wu, F., Qian, J., Chen, R., et al.: An effective approach to protect lithium anode and improve cycle performance for Li–S batteries. ACS Appl. Mater. Interfaces 6, 15542–15549 (2014)

    CAS  PubMed  Google Scholar 

  57. Fan, L., Zhuang, H.L., Gao, L., et al.: Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A. 5, 3483–3492 (2017)

    CAS  Google Scholar 

  58. Zhang, X.Q., Chen, X., Xu, R., et al.: Columnar lithium metal anodes. Angew. Chemie. Int. Ed. 56, 14207–14211 (2017)

    CAS  Google Scholar 

  59. Lin, D., Liu, Y., Chen, W., et al.: Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17, 3731–3737 (2017)

    CAS  PubMed  Google Scholar 

  60. Xu, R., Zhang, X.Q., Cheng, X.B., et al.: Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28, 1–7 (2018)

    Google Scholar 

  61. Liang, X., Pang, Q., Kochetkov, I.R., et al.: A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017)

    CAS  Google Scholar 

  62. Wu, F., Thieme, S., Ramanujapuram, A., et al.: Toward in situ protected sulfur cathodes by using lithium bromide and pre-charge. Nano Energy 40, 170–179 (2017)

    CAS  Google Scholar 

  63. Bron, P., Johansson, S., Zick, K., et al.: Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013)

    CAS  Google Scholar 

  64. Kanno, R., Murayama, M.: Lithium ionic conductor thio-LISICON: the Li2S–GeS2P2S5 system. J. Electrochem. Soc. 148, A742 (2001)

    CAS  Google Scholar 

  65. Yamane, H., Shibata, M., Shimane, Y., et al.: Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 178, 1163–1167 (2007)

    CAS  Google Scholar 

  66. Lin, Z., Liu, Z., Fu, W., et al.: Phosphorous pentasulfide as a novel additive for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 23, 1064–1069 (2013)

    CAS  Google Scholar 

  67. Pang, Q., Liang, X., Shyamsunder, A., et al.: An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 1, 871–886 (2017)

    CAS  Google Scholar 

  68. Wang, J., Lin, F., Jia, H., et al.: Towards a safe lithium–sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode. Angew. Chem. Int. Ed. Engl. 53, 10099–10104 (2014)

    CAS  PubMed  Google Scholar 

  69. Lin, F., Wang, J., Jia, H., et al.: Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials. J. Power Sour. 223, 18–22 (2013)

    CAS  Google Scholar 

  70. Meini, S., Elazari, R., Rosenman, A., et al.: The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J. Phys. Chem. Lett. 5, 915–918 (2014)

    CAS  PubMed  Google Scholar 

  71. Chen, S., Dai, F., Gordin, M.L., et al.: Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium–sulfur batteries. Angew. Chemie. Int. Ed. 55, 4231–4235 (2016)

    CAS  Google Scholar 

  72. Chen, S., Gao, Y., Yu, Z., et al.: High capacity of lithium–sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte. Nano Energy 31, 418–423 (2017)

    CAS  Google Scholar 

  73. Li, G., Gao, Y., He, X., et al.: Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium–sulfur batteries. Nat. Commun. 8, 850 (2017)

    PubMed  PubMed Central  Google Scholar 

  74. Trofimov, B.A., Markova, M.V., Morozova, L.V., et al.: Protected bis(hydroxyorganyl) polysulfides as modifiers of Li/S battery electrolyte. Electrochim. Acta 56, 2458–2463 (2011)

    CAS  Google Scholar 

  75. Chang, C.H., Chung, S.H., Han, P., et al.: Oligoanilines as a suppressor of polysulfide shuttling in lithium–sulfur batteries. Mater. Horiz. 4, 908–914 (2017)

    CAS  Google Scholar 

  76. Wu, H.L., Shin, M., Liu, Y.M., et al.: Thiol-based electrolyte additives for high-performance lithium–sulfur batteries. Nano Energy 32, 50–58 (2017)

    CAS  Google Scholar 

  77. Wu, H.L., Huff, L.A., Gewirth, A.A.: In situ Raman spectroscopy of sulfur speciation in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 7, 1709–1719 (2015)

    CAS  PubMed  Google Scholar 

  78. Chen, Y., Zhang, H., Xu, W., et al.: Polysulfide stabilization: a pivotal strategy to achieve high energy density Li–S batteries with long cycle life. Adv. Funct. Mater. 28, 1704987 (2018)

    Google Scholar 

  79. Liu, M., Ren, Y.X., Jiang, H.R., et al.: An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive. Nano Energy 40, 240–247 (2017)

    CAS  Google Scholar 

  80. Ren, Y.X., Zhao, T.S., Liu, M., et al.: A self-cleaning Li–S battery enabled by a bifunctional redox mediator. J. Power Sources 361, 203–210 (2017)

    CAS  Google Scholar 

  81. Kim, K.R., Lee, K.S., Ahn, C.Y., et al.: Discharging a Li–S battery with ultra-high sulphur content cathode using a redox mediator. Sci. Rep. 6, 32433 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, J., Yang, L., Yang, S., et al.: The application of redox targeting principles to the design of rechargeable Li–S flow batteries. Adv. Energy Mater. 5, 1501808 (2015)

    Google Scholar 

  83. Li, J., Yang, L., Yuan, B., et al.: Combined mediator and electrochemical charging and discharging of redox targeting lithium–sulfur flow batteries. Mater. Today Energy 5, 15–21 (2017)

    Google Scholar 

  84. Choi, W., Im, D., Park, M.S., et al.: Keggin-type polyoxometalates as bidirectional redox mediators for rechargeable batteries. Electrochemistry 84, 882–886 (2016)

    CAS  Google Scholar 

  85. Frischmann, P.D., Gerber, L.C.H., Doris, S.E., et al.: Supramolecular perylene bisimide-polysulfide gel networks as nanostructured redox mediators in dissolved polysulfide lithium–sulfur batteries. Chem. Mater. 27, 6765–6770 (2015)

    CAS  Google Scholar 

  86. Gerber, L.C.H., Frischmann, P.D., Fan, F.Y., et al.: Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16, 549–554 (2016)

    CAS  PubMed  Google Scholar 

  87. Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997)

    CAS  Google Scholar 

  88. Watanabe, M., Thomas, M.L., Zhang, S., et al.: Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017)

    CAS  PubMed  Google Scholar 

  89. Armand, M., Endres, F., MacFarlane, D.R., et al.: Ionic–liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    CAS  PubMed  Google Scholar 

  90. Park, J.W., Ueno, K., Tachikawa, N., et al.: Ionic liquid electrolytes for lithium–sulfur batteries. J. Phys. Chem. C 117, 20531–20541 (2013)

    CAS  Google Scholar 

  91. Ma, G., Wen, Z., Jin, J., et al.: The enhanced performance of Li–S battery with P14YRTFSI-modified electrolyte. Solid State Ionics 262, 174–178 (2014)

    CAS  Google Scholar 

  92. Eshetu, G.G., Grugeon, S., Gachot, G., et al.: LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives. Electrochim. Acta 102, 133–141 (2013)

    CAS  Google Scholar 

  93. Wang, L., Byon, H.R.: N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium–sulfur batteries. J. Power Sour. 236, 207–214 (2013)

    CAS  Google Scholar 

  94. Xiong, S., Scheers, J., Aguilera, L., et al.: Role of organic solvent addition to ionic liquid electrolytes for lithium–sulphur batteries. RSC Adv. 5, 2122–2128 (2015)

    CAS  Google Scholar 

  95. Wang, L., Liu, J., Yuan, S., et al.: To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes. Energy Environ. Sci. 9, 224–231 (2016)

    CAS  Google Scholar 

  96. Barghamadi, M., Best, A.S., Bhatt, A.I., et al.: Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium–sulfur battery. J. Power Sour. 295, 212–220 (2015)

    CAS  Google Scholar 

  97. Zu, C., Manthiram, A.: Stabilized lithium–metal surface in a polysulfide-rich environment of lithium–sulfur batteries. J. Phys. Chem. Lett. 5, 2522–2527 (2014)

    CAS  PubMed  Google Scholar 

  98. Liang, X., Hart, C., Pang, Q., et al.: A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015)

    PubMed  Google Scholar 

  99. Conder, J., Bouchet, R., Trabesinger, S., et al.: Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017)

    CAS  Google Scholar 

  100. Choi, J.W., Cheruvally, G., Kim, D.S., et al.: Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. J. Power Sour. 183, 441–445 (2008)

    CAS  Google Scholar 

  101. Wu, H.L., Haasch, R.T., Perdue, B.R., et al.: The effect of water-containing electrolyte on lithium–sulfur batteries. J. Power Sour. 369, 50–56 (2017)

    CAS  Google Scholar 

  102. Ismail, I., Noda, A., Nishimoto, A., et al.: XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes. Electrochim. Acta 46, 1595–1603 (2001)

    CAS  Google Scholar 

Download references

Acknowledgements

SX and JS would like to thank the National Natural Science Foundation of China (No. 51602250) and Thousand Youth Talents Plan Project of China for their funding support. MR and DW would like to acknowledge the Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-EE0007795 for its support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghai Wang or Jiangxuan Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, S., Regula, M., Wang, D. et al. Toward Better Lithium–Sulfur Batteries: Functional Non-aqueous Liquid Electrolytes. Electrochem. Energ. Rev. 1, 388–402 (2018). https://doi.org/10.1007/s41918-018-0015-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0015-y

Keywords

Navigation