Skip to main content

Advertisement

Log in

Enhanced Ion Chromatographic Speciation of Water-Soluble PM\(_{2.5}\) to Improve Aerosol Source Apportionment

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Ion chromatography (IC) is widely used to quantify sulfate, nitrate, ammonium, sodium, chloride, and potassium from PM\(_{2.5}\) water extracts. IC hardware and software have progressed to allow a broader range of water-soluble compounds to be determined for the existing anion and cation programs and on the same solutions using analytical column, eluent, and detector modifications. Alkylamine, organic acid, and carbohydrate quantification by IC expands the number of source markers, especially for different types of biomass burning and secondary organic aerosols. Although modern systems are highly automated, internal quality control (QC) and external quality assurance (QA) programs are essential. QC includes detailed standard operating procedures, calibration over the range of expected concentrations, performance tests with independent standards, inspection of filters and chromatograms, and anion/cation balances. QA consists of independent system and performance audits, analysis of externally prepared performance samples, and interlaboratory comparisons. The additional water-soluble species provide compounds for speciated emission inventories, source markers to refine aerosol source apportionment, and increased understanding of global carbon, sulfur, and nitrogen cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • AlfaAesar (2016) Ion chromatography standards. AlfaAesar, Tewksbury

  • Baker SC, Kelly DP, Murrell JC (1991) Microbial degradation of methanesulfonic acid: a missing link in the biogeochemical sulfur cycle. Nature 350:627–628. doi:10.1038/350627a0

    Article  Google Scholar 

  • Brent LC, Reiner JL, Dickerson RR, Sander LC (2014) Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry. Anal Chem 86:7328–7336

    Article  Google Scholar 

  • Buchberger WW (2001) Detection techniques in ion chromatography of inorganic ions Trac-Trends. Anal Chem 20:296–303. doi:10.1016/s0165-9936(01)00068-1

    Google Scholar 

  • Butt SB, Riaz M (2009) Determination of cations and anions in environmental samples by HPLC: review. J Liq Chromatogr Relat Technol 32:1045–1064. doi:10.1080/10826070902841299

    Article  Google Scholar 

  • Bytnerowicz A, Sanz MJ, Arbaugh MJ, Padgett PE, Jones DP, Davila A (2005) Passive sampler for monitoring ambient nitric acid (HNO3) and nitrous acid (HNO2) concentrations. Atmos Environ 39:2655–2660

    Article  Google Scholar 

  • Calloway CP, Li SM, Buchanan JW, Stevens RK (1989) A refinement of the potassium tracer method for residential wood smoke. Atmos Environ 23:67–69

    Article  Google Scholar 

  • Caseiro A, Marr IL, Claeys M, Kasper-Giebl A, Puxbaum H, Pio CA (2007) Determination of saccharides in atmospheric aerosol using anion-exchange high-performance liquid chromatography and pulsed-amperometric detection. J Chromatogr A 1171:37–45

    Article  Google Scholar 

  • Chakrabarty RK et al (2016) Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing Atmos. Chem Phys 16:3033–3040. doi:10.5194/acp-16-3033-2016

    Google Scholar 

  • Cheng Z et al (2015) Estimation of aerosol mass scattering efficiencies under high mass loading: case study for the megacity of Shanghai. China Environ Sci Technol 49:831–838

    Article  Google Scholar 

  • Chow JC, Engelbrecht JP, Watson JG, Wilson WE, Frank NH, Zhu T (2002) Designing monitoring networks to represent outdoor human exposure. Chemosphere 49:961–978

    Article  Google Scholar 

  • Chow JC, Fujita EM, Watson JG, Lu Z, Lawson DR, Ashbaugh LL (1994) Evaluation of filter-based aerosol measurements during the. South Calif Air Qual Study Environ Mon Assess 30:49–80

  • Chow JC, Lowenthal DH, Chen L-WA, Wang XL, Watson JG (2015) Mass reconstruction methods for PM\(_{2.5}\): a review. Air Qual Atmos Health 8:243–263

    Article  Google Scholar 

  • Chow JC, Watson JG (1999) Ion chromatography in elemental analysis of airborne particles. In: Landsberger S, Creatchman M (eds) Elemental analysis of airborne particles, vol 1., Advances in environmental industrial and process control technologies. Gordon and Breach Science, Amsterdam, pp 97–137

  • Chow JC, Watson JG (2013) Chemical analyses of particle filter deposits. In: Ruzer L, Harley NH (eds) Aerosols handbook : measurement, dosimetry, and health effects, 2nd edn. CRC Press/Taylor & Francis, New York, pp 179–204

    Google Scholar 

  • Chow JC et al (1993) A sampling system for reactive species in the western United States. In: Winegar ED, Keith LH (eds) Sampling and analysis of airborne pollutants. Lewis Publishers, Ann Arbor, MI, pp 209–228

    Google Scholar 

  • Chow JC, Watson JG, Bowen JL, Frazier CA, Gertler AW, Hinsvark BA, Fung KK (1990) Laboratory operations manual for the California Acid Deposition Monitoring Program: Sample pretreatment, sample preparation, and chemical analysis, Final report. Desert Research Institute, Reno, NV

  • Dabek-Zlotorzynska E et al (2011) Canadian National Air Pollution Surveillance (NAPS) PM\(_{2.5}\) speciation program: methodology and PM\(_{2.5}\) chemical composition for the years 2003–2008. Atmos Environ 45:673–686

    Article  Google Scholar 

  • Davison B et al (1996) Dimethyl sulfide, methane sulfonic acid and physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay. J Geophys Res 101:22855–22868

    Article  Google Scholar 

  • Derrick M, Moyers J (1981) Precise and sensitive water-soluble ion extraction method for aerosol samples collected on polytetrafluoroethylene filters. Anal Lett Part A Chem Anal 14:1637–1652

    Google Scholar 

  • Donahue NM et al (2013) Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environ Chem 10:151–157

  • Duvall RM, Majestic BJ, Shafer MM, Chuang PY, Simoneit BRT, Schauer JJ (2008) The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils. Atmos Environ 42:5872–5884

    Article  Google Scholar 

  • Engling G et al (2006) Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos Environ 40:S299–S311

    Article  Google Scholar 

  • ERA (2016) Custom standards simplified. ERA: A Waters Company, Golden, CO

  • Fenn JB (2002) Electrospray ionization mass spectrometry: how it all began. J Biomol Tech 13:101–118

    Google Scholar 

  • Fenn JB (2003) Electrospray wings for molecular elephants (Nobel lecture). Angewandte Chem Int Edition 42:3871-3894. doi:10.1002/anie.200300605

  • FisherScientific (2016) Falcon\(^{\rm TM}\) 15mL Conical Centrifuge Tubes. Thermo Fisher Inc, Waltham, MA

  • Fosco T, Schmeling M (2007) Determination of water-soluble atmospheric aerosols using ion chromatography. Environ Mon Assess 130:187–199

    Article  Google Scholar 

  • Fowler D et al (2015) Effects of global change during the 21st century on the nitrogen cycle Atmos. Chem Phys 15:13849–13893. doi:10.5194/acp-15-13849-2015

    Google Scholar 

  • Fritz JS (1991) Principles and applications of ion-exclusion. chromatogr J Chromatogr A 546:111–118

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  Google Scholar 

  • Gama MR, Silva RGD, Collins CH, Bottoli CBG (2012) Trac Trends Anal Chem. Hydrophilic interaction chromatography 37:48–60. doi:10.1016/j.trac.2012.03.009

    Google Scholar 

  • Garcia CD, Engling G, Herckes P, Collett JL Jr, Henry CS (2005) Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection. Environ Sci Technol 39:618–623

    Article  Google Scholar 

  • Ge XL, Wexler AS, Clegg SL (2011) Atmospheric amines - Part I. A review. Atmos Environ 45:524–546

    Article  Google Scholar 

  • Gennaro MC, Angelino S (1997) Separation and determination of inorganic anions by reversed-phase high-performance liquid chromatography. J Chromatogr A 789:181–194. doi:10.1016/s0021-9673(97)00971-0

    Article  Google Scholar 

  • Granath G, Limpens J, Posch M, Mucher S, De Vries W (2014) Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands. Environ Pollut 187:73–80

    Article  Google Scholar 

  • Hartwell SK, Kehling A, Lapanantnoppakhun S, Grudpan K (2013) Flow injection/sequential injection chromatography: a review of recent developments in low pressure with high performance chemical separation. Anal Lett 46:1640–1671

    Article  Google Scholar 

  • Hawkins LN, Russell LM, Covert DS, Quinn PK, Bates TS (2010) Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008. J Geophys Res-Atmos 115

  • Hecobian A, Evanoski-Cole A, Eiguren-Fernandez A, Sullivan AP, Lewis GS, Hering SV, Collett JL (2016) Evaluation of the Sequential Spot Sampler (S3) for time-resolved measurement of PM\(_{2.5}\) sulfate and nitrate through lab and field measurements Atmospheric. Meas Tech 9:525–533. doi:10.5194/amt-9-525-2016

    Article  Google Scholar 

  • Ho KF et al (2015) Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China. Atmos Environ 106:252–261

    Article  Google Scholar 

  • Hoffer EM, Kothny EL, Appel BR (1979) Simple method for microgram amounts of sulfate in atmospheric particles. Atmos Environ 13:303–306. doi:10.1016/0004-6981(79)90173-2

    Article  Google Scholar 

  • Iinuma Y, Engling G, Puxbaum H, Herrmann H (2009) A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol. Atmos Environ 43:1367–1371

    Article  Google Scholar 

  • IMPROVE (2016) Interagency Monitoring of Protected Visual Environments. National Park Service, Ft., Collins, CO

  • Karthikeyan S, See SW, Balasubramanian R (2007) Simultaneous determination of inorganic anions and selected organic acids in airborne particulate matter by ion chromatography. Anal Lett 40:793–804

    Article  Google Scholar 

  • Karu N, Dicinoski GW, Haddad PR (2012) Use of suppressors for signal enhancement of weakly-acidic analytes in ion chromatography with universal detection methods. Trac Trends Anal Chem 40:119–132

    Article  Google Scholar 

  • Kundu S, Kawamura K, Andreae TW, Hoffer A, Andreae MO (2010) Molecular distributions of dicarboxylic acids, ketocarboxylic acids and alpha-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers Atmos. Chem Phys 10:2209–2225

    Google Scholar 

  • Lachat (2016) QuikChem with ion chromatography option. Lachat Instruments, Loveland, CO

  • Laskin A, Laskin J, Nizkorodov SA (2015) Chemistry of atmospheric brown carbon. Chem Rev 115:4335–4382

    Article  Google Scholar 

  • Lucy CA, Wahab MF (2013) Advances in high-speed and high-resolution ion chromatography. LC GC Eur 31:38-42

  • Mazurek MA, Cass GR, Simoneit BRT (1989) Interpretation of high-resolution gas chromatography and high-resolution gas chromatography/mass spectrometry data acquired from atmospheric organic aerosol samples. Aerosol Sci Technol 10:408–420

    Article  Google Scholar 

  • Metrohm (2016) Ion chromatography. Metrohm AG, Herisau, Switzerland

  • Michalski R (2014) Application of ion chromatography in clinical studies and pharmaceutical industry. Mini Rev Med Chem 14:862–872

    Article  Google Scholar 

  • Michalski R (2016) Application of IC-MS and IC-ICP-MS in environmental research. Wiley, New York, NY

    Book  Google Scholar 

  • Millet DB et al (2015) A large and ubiquitous source of atmospheric formic acid. Atmos Chem Phys 15:6283–6304

    Article  Google Scholar 

  • Miyazaki Y, Fu PQ, Ono K, Tachibana E, Kawamura K (2014) Seasonal cycles of water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan. J Geophys Res Atmos 119:1440–1454

    Article  Google Scholar 

  • Mouli PC, Mohan SV, Reddy SJ (2003) A study on major inorganic ion composition of atmospheric aerosols at Tirupati. J Hazard Mater 96:217–228

    Article  Google Scholar 

  • Nakatani N, Kozaki D, Mori M, Tanaka K (2012) Recent progress and applications of ion-exclusion/ion-exchange chromatography for simultaneous determination of inorganic anions and cations. Anal Sci 28:845–852

    Article  Google Scholar 

  • Olariu RI, Vione D, Grinberg N, Arsene C (2015) Applications of liquid chromatographic techniques in the chemical characterization of atmospheric aerosols. J Liq Chromatogr Relat Technol 38:322–348

    Article  Google Scholar 

  • Pall (2016) Nylasorb\(^{\rm TM}\) nylon membrane disc filters. Pall Corporation, East Hills, NY

  • Pfaff JD, Hautman DP, Munch DJ (1997) Methd 300.1: Determination of inorganic anions by ion chromatography. US Environmental Protection Agency, Research Triangle Park, NC

  • Pitchford ML, Malm WC, Schichtel BA, Kumar NK, Lowenthal DH, Hand JL (2007) Revised algorithm for estimating light extinction from IMPROVE particle speciation data. JAWMA 57:1326–1336

    Article  Google Scholar 

  • Pohl C (2013) Recent developments in ion exchange columns for ion chromatography. LC GC Eur 31:16–22

  • Small H, Stevens TS, Bauman WC (1975) Novel ion exchange chromatographic method using conductimetric detection. Anal Chem 47:1801–1809

    Article  Google Scholar 

  • Smiley J (2005) Technical memorandum: experimental intercomparison of speciation laboratories. US Environmental Protection Agency, Montgomery, AL

  • Smiley J (2007) Technical memorandum: experimental intercomparison of speciation laboratories. US Environmental Protection Agency, Montgomery, AL

  • Smiley J (2009) Technical memorandum: experimental intercomparison of speciation laboratories. US Environmental Protection Agency, Montgomery, AL

  • Smiley J (2010) Technical memorandum: experimental intercomparison of speciation laboratories. US Environmental Protection Agency, Montgomery, AL

  • Stevens RK, Dzubay TG, Russwurm GA, Rickel DE (1978) Sampling and analysis of atmospheric sulfates and related species. Atmos Environ 12:55–68

    Article  Google Scholar 

  • Sullivan AP, Frank N, Onstad G, Simpson CD, Collett JL Jr (2011) Application of high-performance anion-exchange chromatography-pulsed amperometric detection for measuring carbohydrates in routine daily filter samples collected by a national network: 1. Determination of the impact of biomass burning in the upper Midwest. J Geophys Res-Atmos 116:D8. doi:10.1029/2010JD014166

  • Talebi SM, Abedi M (2005) Determination of atmospheric concentrations of inorganic anions by ion chromatography following ultrasonic extraction. J Chromatogr A 1094:118–121. doi:10.1016/j.chroma.2005.07.118

    Article  Google Scholar 

  • Taylor S (2005) Technical memorandum: DRI laboratory audit. US Environmental Protection Agency, Montgomery, AL

  • Taylor S (2007) Technical memorandum: DRI laboratory audit. US Environmental Protection Agency, Montgomery, AL

  • Taylor S (2008) Technical memorandum: experimental intercomparison of speciation laboratories. US Environmental Protection Agency, Montgomery, AL

  • ten Brink HM, Otjes R, Jongejan P, Slanina S (2007) An instrument for semi-continuous monitoring of the size-distribution of nitrate, ammonium, sulphate and chloride in aerosol. Atmos Environ 41:2768–2779

    Article  Google Scholar 

  • Thermo-Dionex (2016) Ion chromatography. Thermo Scientific Inc, Waltham, MA

  • TNI (2016) National Environmental Laboratory Accreditation Program (NELAP). The NELAC Institute (TNI), Weatherford, TX

  • Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nature Geosci 8:11–14

    Article  Google Scholar 

  • U.S.EPA (2000) NAREL standard operating procedure—Cation analysis for the PM\(_{2.5}\) chemical speciation QA program. U.S. Environmental Protection Agency, Las Vegas, NV

  • U.S.EPA (2007) Method 9056A: Determination of inorganic anions by ion chromatography. Environmental Protection Agency, USA

  • U.S.EPA (2016a) Chemical speciation. US Environmental Protection Agency, Research Triangle Park, NC

  • U.S.EPA (2016b) PM\(_{2.5}\) speciation lab audit reports and assessments. US Environmental Protection Agency, Research Triangle Park, NC

  • URG (2016) Ambient nitrate and sulfate monitor. URG Corporation, Chapel Hill, NC

    Google Scholar 

  • VandenBoer TC, Markovic MZ, Petroff A, Czar MF, Borduas N, Murphy JG (2012) Ion chromatographic separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using preconcentration and suppressed conductivity detection. J Chromatogr A 1252:74–83

    Article  Google Scholar 

  • Wang Y, Zhang QQ, He K, Zhang Q, Chai L (2013) Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia Atmos. Chem Phys 13:2635–2652

    Google Scholar 

  • Wang YH, Field RD, Roswintiarti O (2004) Trends in atmospheric haze induced by peat fires in Sumatra Island, Indonesia and El Nino phenomenon from 1973 to 2003. Geophys Res Lett 31

  • Waters (2016) Acquity UPC2 system. Waters Corporation, Milford, MA

  • Watson JG (2002) Visibility: science and regulation—critical review. JAWMA 52:628-713

  • Watson JG, Chow JC (2013) Source apportionment. In: El-Shaarwi AH, Piegorsch WW (eds) Encyclopedia of environmetrics. Wiley, Chichester, pp 1–8

  • Watson JG, Chow JC (2015) Receptor models and measurements for identifying and quantifying air pollution sources. In: Murphy BL, Morrison RD (eds) Introduction to Environmental Forensics, 3rd edn. Elsevier, Amsterdam, pp 677–706

  • Watson JG et al (1991) Measurements of dry deposition parameters for the California Acid Deposition Monitoring Program. Desert Research Institute, Reno, NV

    Google Scholar 

  • Watson JG, Chow JC, Engling G, Chen L-WA, Wang XL (2016) Source apportionment: principles and methods. In: Harrison RM (ed) Airborne particulate matter: sources, atmospheric processes and health. Royal Society of Chemistry, London, pp 72–125

  • Watson JG, Turpin BJ, Chow JC (2001) The measurement process: precision, accuracy, and validity. In: Cohen BS, McCammon CS Jr (eds) Air sampling Instruments for Evaluation of Atmospheric Contaminants, 9th edn. American Conference of Governmental Industrial Hygienists, Cincinnati, OH, pp 201-216

  • Weber RJ, Orsini D, Daun Y, Lee YN, Klotz PJ, Brechtel F (2001) A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Sci Technol 35:718–727

    Article  Google Scholar 

  • Wolfson JM (1980) Determination of microgram quantities of inorganic sulfate in atmospheric particulates. JAPCA 30:688–690

    Google Scholar 

  • Yttri KE et al (2015) An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples. Atmos Measurement Tech 8:125–147

    Article  Google Scholar 

  • Yu XY, Lee T, Ayres B, Kreidenweis SM, Collett JL Jr, Malm WC (2005) Particulate nitrate measurement using nylon filters. JAWMA 55:1100–1110

    Google Scholar 

  • Zhang FF, Shen GB, Ji SL, Yang BC (2015) Recent advances of stationary phases for hydrophilic interaction liquid chromatography and ion chromatography. J Liq Chromatogr Relat Tech 38:349–352. doi:10.1080/10826076.2014.941258

    Article  Google Scholar 

  • Zhang XY, Wang YQ, Niu T, Zhang XC, Gong SL, Zhang YM, Sun JY (2012) Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols Atmos. Chem Phys 12:779–799

    Google Scholar 

  • Zhang ZS et al (2013) Determination of isoprene-derived secondary organic aerosol tracers (2-methyltetrols) by HPAEC-PAD: Results from size-resolved aerosols in a tropical rainforest. Atmos Environ 70:468–476

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded in part by the US National Science Foundation (CHE-1214163 and CHE-1464501) and the US EPA PM\(_{2.5}\) Chemical Speciation Network (CSN) Laboratory Analysis Program (EP-D-15-0250). The authors would like to thank Mr. Patrick Hurbain, Dr. Guenter Engling (now with California Air Resources Board), Dr. Paul Cropper, and Mr. Steve Kohl for technical input and laboratory analyses and Ms. Katherine Greenblatt of the Desert Research Institute (DRI) for assembling and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith C. Chow.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, J.C., Watson, J.G. Enhanced Ion Chromatographic Speciation of Water-Soluble PM\(_{2.5}\) to Improve Aerosol Source Apportionment. Aerosol Sci Eng 1, 7–24 (2017). https://doi.org/10.1007/s41810-017-0002-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-017-0002-4

Keywords

Navigation