Skip to main content
Log in

Maximal regularity for the damped wave equations

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We consider the problem of maximal regularity for non-autonomous second order Cauchy problems

$$\begin{aligned} \left\{ \begin{array}{l} u''(t)+{\mathcal {B}}(t)u'(t)+{\mathcal {A}}(t)u(t)=f(t) \quad t\text{-a.e.} \\ u(0)=u_{0},\quad u'(0)=u_{1}. \end{array} \right. \end{aligned}$$

Here, the time dependent operator \({\mathcal {A}}(t)\) is bounded from the Hilbert space \({\mathcal {V}}\) to its dual space \({\mathcal {V}}'\) and \({\mathcal {B}}(t)\) is associated with a sesquilinear form \(\mathfrak {b}(t,\cdot ,\cdot )\) with domain \({\mathcal {V}}\). We prove maximal \(L^p\)-regularity results and other regularity properties for the solutions of the above equation under minimal regularity assumptions on the operators. Our result is motivated by boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achache, M., Ouhabaz, E.M.: Non-autonomous right and left multiplicative perturbations and maximal regularity. Stud. Math. 242(1), 1–30 (2018)

    Article  MathSciNet  Google Scholar 

  2. Achache, M., Ouhabaz, E.M.: Lions’ maximal regularity problem with \(H^{\frac{1}{2}}\)-regularity in time. J. Differ. Equ. 266, 3654–3678 (2019)

    Article  Google Scholar 

  3. Amann, H.: Linear and Quasilinear Parabolic Problems. Abstract Linear Theory, vol. I. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  4. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel (2011)

    Book  Google Scholar 

  5. Arendt, W., Dier, D., Fackler, S.: J. L. Lions’ problem on maximal regularity. Arch. Math. (Basel) 109(1), 5972 (2017)

    Article  MathSciNet  Google Scholar 

  6. Arendt, W., Chill, R., Fornaro, S., Poupaud, C.: \(L^p\)-maximal regularity for non-autonomous evolution equations. J. Differ. Equ. 237(1), 1–26 (2007)

    Article  Google Scholar 

  7. Arendt, W., Monniaux, S.: Maximal regularity for non-autonomous Robin boundary conditions. Math. Nachr. 289(11–12), 1325–1340 (2016)

    Article  MathSciNet  Google Scholar 

  8. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on \({\mathbb{R}}^n\). Ann. Math. (2) 156(2), 633–654 (2002)

    Article  MathSciNet  Google Scholar 

  9. Batty, C.J.K., Chill, R., Srivastava, S.: Maximal regularity for second order non-autonomous Cauchy problems. Stud. Math. 189(3), 205–223 (2008)

    Article  MathSciNet  Google Scholar 

  10. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992)

    MATH  Google Scholar 

  11. Dier, D., Ouhabaz, E.M.: Maximal regularity for non-autonomous second order Cauchy problems. Integral Equ. Oper. Theory 78(3), 427–450 (2014)

    Article  MathSciNet  Google Scholar 

  12. Fackler, S.: J. L. Lions’ problem concerning maximal regularity of equations governed by non-autonomous forms. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(3), 699–709 (2017)

    Article  MathSciNet  Google Scholar 

  13. Fackler, S.: Nonautonomous maximal \(L^p\)-regularity under fractional Sobolev regularity in time. Anal. PDE 11(5), 1143–1169 (2018)

    Article  MathSciNet  Google Scholar 

  14. Haak, B., Ouhabaz, E.M.: Maximal regularity for non-autonomous evolution equations. Math. Ann. 363(3–4), 1117–1145 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kato, T.: Fractional powers of dissipative operators. J. Math. Soc. Jpn. 13, 246–274 (1961)

    Article  MathSciNet  Google Scholar 

  16. Lions, J.L.: Équations Différentielles Opérationnelles et Problèmes aux Limites, Die Grundlehren der mathematischen Wissenschaften, vol. 111. Springer, Berlin (1961)

    Google Scholar 

  17. Lunardi, A.: Interpolation theory. Second. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa (2009)

  18. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and Applications, vol. 16. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  19. McIntosh, A.: On the comparability of \(A^{\frac{1}{2}}\) and \(A^{*\frac{1}{2}}\). Proc. Am. Math. Soc. 32, 430–434 (1972)

    Google Scholar 

  20. Ouhabaz, E.M.: Analysis of Heat Equations on Domains. London Mathematical Society Mono-Graphs Series, vol. 31. Princeton University Press, Princeton (2005)

    Book  Google Scholar 

  21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

Download references

Acknowledgements

The present work is a part of my PhD Thesis prepared at the Institut de Mathématiques de Bordeaux under the supervision of professor El Maati Ouhabaz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Achache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achache, M. Maximal regularity for the damped wave equations. J Elliptic Parabol Equ 6, 835–870 (2020). https://doi.org/10.1007/s41808-020-00084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-020-00084-8

Keywords

Mathematics Subject Classification

Navigation