Skip to main content

Advertisement

Log in

Improving electric insulation characteristics of PVA/V2C MXene composite high-dielectric-constant films by blending cellulose

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Polymer/conductor composite dielectrics easily have high permittivity, high conductivity, and high dielectric loss, limiting large increase of energy storage density in them. The relationship between high permittivity and low conductivity is coordinated to achieve high energy density. In this study, polyvinyl alcohol (PVA)/V2C MXene/cellulose ternary composites with high permittivity and low dielectric loss were prepared. Due to good water solubility of PVA and high water dispersibility of V2C, PVA and V2C have good interfacial compatibility. That reduces the interface electric leakage conductance, which is conducive to the lower conductivity and dielectric loss in the composite materials. The high interfacial polarization between PVA and V2C improves the dielectric response of the composite materials, improving the permittivity of the composite materials. Compared with binary PVA/V2C composites, ternary PVA/V2C/cellulose composite materials use the high insulation of cellulose filler to increase the insulation of composites. Thus, the conductivity and dielectric loss are reduced in ternary composites. Good synergy of conductive V2C and insulating cellulose fillers is important to obtaining the balance of high dielectric response and high insulation trait in ternary composites. Best ternary composite with 6 wt% V2C has a high permittivity of ca. 40, low dielectric loss of ca. 0.25 at 100 Hz, and high breakdown strength of ca. 40 MV m−1. This work enables a facile preparation of promising composites for dielectric energy storage.

Relevance summary

• Novel ternary composite dielectric films with V 2 C MXene and cellulose were fabricated.

• Good synergy of V 2 C and cellulose can lead to optimization of overall electric properties.

• This work might provide ideas for preparing bio-dielectric materials employing cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Midilli, A., Dincer, I., Ay, M.: Energy Policy. 34, 3623 (2006). https://doi.org/10.1016/j.enpol.2005.08.003

    Article  Google Scholar 

  2. Yang, Y.Y., Liu, Y.J., Cai, X.F.: Colloids Surf. A Physicochem. Eng. Asp. 610, 125929 (2021). https://doi.org/10.1016/j.colsurfa.2020.125929

    Article  CAS  Google Scholar 

  3. Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y., Ryu, J.: Adv. Funct. Mater. 28, 1803665 (2018). https://doi.org/10.1002/adfm.201803665

    Article  CAS  Google Scholar 

  4. Huang, A.Q., Crow, M.L., Heydt, G.T., Zheng, J.P., Dale, S.J.: Proc. IEEE. 99, 133 (2011). https://doi.org/10.1109/JPROC.2010.2081330

    Article  Google Scholar 

  5. Yang, Y.Y., Zhao, Y.S., Liu, J., et al.: ACS Mater. Lett. 2, 453 (2020). https://doi.org/10.1021/acsmaterialslett.0c00086

    Article  CAS  Google Scholar 

  6. Guo, R., Luo, H., Yan, M.Y., Zhou, X.F., Zhou, K.C., Zhang, D.: Nano. Energy. 79, 105412 (2021)

    CAS  Google Scholar 

  7. Guo, R., Roscow, J., Bowen, C., et al.: J. Mater. Chem. A. 8, 3135 (2020)

    Article  CAS  Google Scholar 

  8. Dang, Z.-M., Yuan, J.-K., Zha, J.-W., Zhou, T., Li, S.-T., Hu, G.-H.: Prog. Mater. Sci. 57, 660 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

  9. Dang, Z.-M., Zheng, M.-S., Zha, J.-W.: Small. 12, 1688 (2016). https://doi.org/10.1002/smll.201503193

    Article  CAS  Google Scholar 

  10. Reis, A.V., Fajardo, A.R., Schuquel, I.T.A., et al.: The Journal of Organic Chemistry. 74, 3750 (2009). https://doi.org/10.1021/jo900033c

    Article  CAS  Google Scholar 

  11. Woo, J.H., Kim, N.H., Kim, S.I., Park, O.K., Lee, J.H.: Compos. Part B. 199, 108205 (2020). https://doi.org/10.1016/j.compositesb.2020.108205

    Article  CAS  Google Scholar 

  12. Tanaka, Y., Saito, H., Tsutsumi, Y., Doi, H., Imai, H., Hanawa, T.: Mater. Trans. 49, 805 (2008). https://doi.org/10.2320/matertrans.MRA2007317

    Article  CAS  Google Scholar 

  13. Zadorecki, P., Michell, A.J.: Polymer. Composites. 10, 69 (1989). https://doi.org/10.1002/pc.750100202

    Article  CAS  Google Scholar 

  14. Rhim, J.-W., Sohn, M.-Y., Joo, H.-J., Lee, K.-H.: J. Appl. Polym. Sci. 50, 679 (1993). https://doi.org/10.1002/app.1993.070500413

    Article  CAS  Google Scholar 

  15. Tseng, J.-K., Tang, S., Zhou, Z., et al.: Polymer. 55, 8 (2014). https://doi.org/10.1016/j.polymer.2013.11.042

    Article  CAS  Google Scholar 

  16. Boutros, S., Hanna, A.A.: Journal of Polymer Science: Polymer Chemistry Edition. 16, 89 (1978). https://doi.org/10.1002/pol.1978.170160109

    Article  CAS  Google Scholar 

  17. Zhang, C., Lei, C., Cen, C., et al.: Electrochim. Acta. 260, 814 (2018). https://doi.org/10.1016/j.electacta.2017.12.044

    Article  CAS  Google Scholar 

  18. Song, N., Pan, H., Liang, X., Cao, D., Shi, L., Ding, P.: J. Mater. Chem. C. 6, 7085 (2018). https://doi.org/10.1039/C8TC01277F

    Article  CAS  Google Scholar 

  19. Cao, Y., Treacy, G.M., Smith, P., Heeger, A.J.: Appl. Phys. Lett. 60, 2711 (1992). https://doi.org/10.1063/1.106852

    Article  CAS  Google Scholar 

  20. Liu, F., Zhou, J., Wang, S., et al.: J. Electrochem. Soc. 164, A709 (2017). https://doi.org/10.1149/2.0641704jes

    Article  CAS  Google Scholar 

  21. Buleon, A., Chanzy, H.: J. Polym. Sci. Polym. Phys. Ed. 18, 1209 (1980). https://doi.org/10.1002/pol.1980.180180604

    Article  CAS  Google Scholar 

  22. McCarthy, D.N., Stoyanov, H., Rychkov, D., Ragusch, H., Melzer, M., Kofod, G.: Composites. Sci. Technol. 72, 731 (2012). https://doi.org/10.1016/j.compscitech.2012.01.026

    Article  CAS  Google Scholar 

  23. Ngai, K.L., Jonscher, A.K., White, C.T.: Nature. 277, 185 (1979). https://doi.org/10.1038/277185a0

    Article  CAS  Google Scholar 

  24. Yuan, H., Nishiyama, Y., Wada, M., Kuga, S.: Biomacromolecules. 7, 696 (2006). https://doi.org/10.1021/bm050828j

    Article  CAS  Google Scholar 

  25. Park, J.S., Kim, T., Kim, W.S.: Sci. Rep. 7, 3246 (2017). https://doi.org/10.1038/s41598-017-03365-w

    Article  CAS  Google Scholar 

  26. Sirringhaus, H., Brown, P.J., Friend, R.H., et al.: Nature. 401, 685 (1999). https://doi.org/10.1038/44359

    Article  CAS  Google Scholar 

  27. Heikman, S., Keller, S., Wu, Y., Speck, J.S., DenBaars, S.P., Mishra, U.K.: J. Appl. Phys. 93, 10114 (2003). https://doi.org/10.1063/1.1577222

    Article  CAS  Google Scholar 

  28. Xu, Z., Lv, X., Chen, J., Jiang, L., Lai, Y., Li, J.: Phys. Chem. Chem. Phys. 19, 7807 (2017). https://doi.org/10.1039/C7CP00064B

    Article  CAS  Google Scholar 

  29. Choudhary, S., Sengwa, R.J.: AIP Conference Proceedings. 1728, 020420 (2016). https://doi.org/10.1063/1.4946471

    Article  Google Scholar 

  30. Cole, M.W., Nothwang, W.D., Hubbard, C., Ngo, E., Ervin, M.: J. Appl. Phys. 93, 9218 (2003). https://doi.org/10.1063/1.1569392

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the General Project of Natural Science Foundation of Chongqing Science and Technology Bureau (grant number cstc2020jcyj-msxm0673), Science and Technology Research Program of Chongqing Municipal Education Commission (grant numbers KJQN201901417 and KJQN201801409), and Support Programme for Growth of Young Scientific Research Talents of Yangtze Normal University (grant number 2018QNRC01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefeng Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Zhou, J., Qin, B. et al. Improving electric insulation characteristics of PVA/V2C MXene composite high-dielectric-constant films by blending cellulose. J Aust Ceram Soc 57, 819–824 (2021). https://doi.org/10.1007/s41779-021-00584-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00584-3

Keywords

Navigation