Skip to main content
Log in

Corrosion Behavior of Atmospheric Plasma-Sprayed YAG/8YSZ Double Ceramic-Layered Thermal Barrier Coatings in a Calcium–Magnesium–Alumino-Silicate Melt

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Calcium–magnesium–alumino-silicate (CMAS) corrosion is one of the important causes of failure in thermal barrier coatings (TBCs). Herein, 8YSZ (8%Y2O3-ZrO2) single and YAG (Y3Al5O12)/8YSZ double ceramic-layered (DCL) TBCs were deposited on the Al2O3 substrate by atmospheric plasma spraying, respectively. The CMAS corrosion tests were conducted at 1250 °C for 1, 4, and 12 h, as well as on YAG/CMAS mixed powder (mass ratio 1:1) for 12 h. The microstructure and the corrosion products were analyzed to reveal the CMAS corrosion processes and mechanisms of these two types of TBCs. Results showed that YAG particle surface layer is slightly corroded by molten CMAS after 12 h at 1250 °C, which proved the good CMAS corrosion resistance and high-temperature stability of YAG. For the pure 8YSZ TBCs, the coating phase started to transfer from the as-sprayed tetrahedral phase to a monoclinic phase after corrosion for 1 h, and CMAS infiltrated the 8YSZ ceramic layer completely after 12 h. However, for the YAG/8YSZ DCL TBCs, only the high-melting-point apatite phase formed on the surface of TBCs blocked the further infiltration of CMAS by slowing further corrosion of CMAS. The protective apatite phase isolated CMAS from the internal YAG, keeping the bottom 8YSZ ceramic layer intact and extensively reducing the further damage to these TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Chen, P. Hu, and J. Pu, Interfacial Interaction and Roughness Parameters Effects on the Residual Stresses in DCL-TBC System with Different Thickness Distributions, Ceram. Int., 2021, 47(2), p 2781–2792.

    Article  CAS  Google Scholar 

  2. A.C. Karaoglanli, K.M. Doleker, B. Demirel, A. Turk, and R. Varol, Effect of shot Peening on the Oxidation Behavior of Thermal Barrier Coatings, Appl. Surf. Sci., 2015, 354, p 314–322.

    Article  CAS  Google Scholar 

  3. R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315–348.

    Article  CAS  Google Scholar 

  4. T. Steinke, D. Sebold, and D.E. Mack, A novel Test Approach for plasma-Sprayed Coatings Tested Simultaneously under CMAS and Thermal Gradient Cycling Conditions, Surf. Coat. Tech., 2010, 205(7), p 2287–2295.

    Article  CAS  Google Scholar 

  5. A. Sharma, G. Witz, P.C. Howell, and N. Hitchman, Interplay of the Phase and the Chemical Composition of the Powder Feedstock on the Properties of Porous 8YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2020, 41, p 3706–3716.

    Article  Google Scholar 

  6. L.Y. Chen, X.X. Tian, and H.Y. Wang, Phase Interaction Induced Texture in a Plasma Sprayed-Remelted NiCrBSi Coating during Solidification: An Electron Backscatter Diffraction Study, Surf. Coat. Tech., 2019, 358, p 467–480.

    Article  CAS  Google Scholar 

  7. J.J. Gomezchavez, R. Naraparaju, and C. Mikulla, Comparative Study of EB-PVD Gadolinium-Zirconate and Yttria-Rich Zirconia Coatings Performance against Fe-Containing Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration, Corros. Sci., 2021, 190, p 190660.

    Google Scholar 

  8. P. Sang, L.Y. Chen, and C. Zhao, Particle Size-Dependent Microstructure, Hardness and Electrochemical Corrosion Behavior of Atmospheric Plasma Sprayed NiCrBSi Coatings, Metals, 2019, 9(12), p 1342.

    Article  CAS  Google Scholar 

  9. Y. Ozgurluk, A.C. Karaoglan, and H. Ahlatci, Comparison of Calcium-Magnesium-Alumina-Silicate (CMAS) Resistance Behavior of Produced with Electron Beam Physical Vapor Deposition (EB-PVD) Method YSZ and Gd2Zr2O7/YSZ Thermal Barrier Coatings Systems, Vacuum, 2021, 194, p 110576.

    Article  CAS  Google Scholar 

  10. W. Fan, X. Song, and Y. Huang, Structure Change and Phase Transition Distribution Caused by CMAS Corrosion of YSZ Coating, J. Inorg. Mater., 2021, 36(10), p 1059.

    Article  Google Scholar 

  11. A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma, Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta. Mater., 2007, 55(20), p 6734–6745.

    Article  CAS  Google Scholar 

  12. H. Fang, W. Wang, J. Huang, and D. Ye, Investigation of CMAS Resistance of Sacrificial Plasma-Sprayed Mullite-YSZ Protective Layer on 8YSZ Thermal Barrier Coating, Corros. Sci., 2020, 173, p 108764.

    Article  CAS  Google Scholar 

  13. S.H. Liu, C.X. Li, and H.Y. Zhang, A Novel Structure of YSZ Coatings by Atmospheric Laminar Plasma Spraying Technology, Scr. Mater., 2018, 153, p 73–76.

    Article  CAS  Google Scholar 

  14. G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray. Techn., 2013, 22(5), p 646–658.

    Article  Google Scholar 

  15. S.H. Liu, J.P. Trelles, and A.B. Murphy, Low-Pressure Plasma-Induced Physical Vapor Deposition of Advanced Thermal Barrier Coatings: Microstructures, Modelling and Mechanisms, Mater. Today Phys., 2021, 21, p 100481.

    Article  CAS  Google Scholar 

  16. S. Lakiza, O. Fabrichnay, C.H. Wang, M. Zinkevich, and Aldinger, Phase Diagram of the ZrO2-Gd2O3-Al2O3 System, J. Eur. Ceram. Soc., 2006, 26(3), p 233–246.

    Article  CAS  Google Scholar 

  17. R. Vaßen, A. Stuke, and D. Stöver, Recent Developments in the field of Thermal Barrier Coatings, J. Therm. Spray. Techn., 2009, 18(2), p 181–186.

    Article  Google Scholar 

  18. S. Kramer, J. Yang, and C.G. Levi, Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts, J. Am. Ceram. Soc., 2008, 91(2), p 576–583.

    Article  CAS  Google Scholar 

  19. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, E. Lara-Curzio, and K. Faber, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736–2744.

    Article  CAS  Google Scholar 

  20. R. Vaßen, X. Cao, F. Tietz, and D. Basu, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023–2028.

    Article  Google Scholar 

  21. Y.J. Su, R.W. Trice, K.T. Faber, H. Wang, and W.D. Porter, Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12(YAG)/Y2O3-ZrO2(YSZ) Thermal-Barrier Coatings, Oxid. Met., 2004, 61, p 253–271.

    Article  CAS  Google Scholar 

  22. S.W. Jung, S. Park, and D. Choi, Efficient Drug Delivery Carrier Surface without Unwanted Adsorption Using Sulfobetaine Zwitterion, Adv. Eng. Mater., 2020, 23, p 2001433.

    Google Scholar 

  23. M. Gell, J. Wang, R. Kumar, J. Roth, and E.H. Jordan, Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process, J. Therm. Spray. Techn., 2018, 27(4), p 543–555.

    Article  CAS  Google Scholar 

  24. G.R. Li, J.G. Yang, and C.X. Li, A Comprehensive Mechanism for the Sintering of Plasma-Sprayed Nanostructured Thermal Barrier Coatings, Ceram. Int., 2017, 43, p 9600–9615.

    Article  CAS  Google Scholar 

  25. R. Kumar, E. Jordan, M. Gell, J. Roth, C. Jiang, J. Wang, and S. Rommel, CMAS Behavior of Yttrium Aluminum Garnet (YAG) and Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings, Surf. Coat. Tech., 2017, 327, p 126–138.

    Article  CAS  Google Scholar 

  26. M.J. Liu, G. Zhang, Y.H. Lu, J.Q. Han, G.R. Li, C.X. Li, C.J. Li, and G.J. Yang, Plasma Spray-Physical Vapor Deposition toward Advanced Thermal Barrier Coatings: A Review, Rare. Met., 2020, 39(5), p 479–497.

    Article  CAS  Google Scholar 

  27. R. Wellman, G. Whitman, and R.J. Nicholls, CMAS Corrosion of EB PVD TBCs: Identifying the Minimum Level to Initiate Damage, Int. J. Refract. Met. H., 2010, 28(1), p 124–132.

    Article  CAS  Google Scholar 

  28. K. Stephan, J. Yang, and C.G. Levi, Thermo Mechanical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89(10), p 3167–3175.

    Article  Google Scholar 

  29. Y. Kuru, O. Savasir, S.Z. Nergiz, C. Oncel, and P. Aken, Yttrium Aluminum Garnet as a Scavenger for Ca and Si, J. Am. Ceram. Soc., 2008, 91(11), p 3663–3667.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (51901093, 52075234), Hongliu Distinguished Young Talent Support Program of Lanzhou University of Technology, Major Special Projects of Gansu Province (21ZD4WA017), the International Science and Technology Correspondent Program of Gansu province (17JR7WA017), and the program of “Science and Technology International Cooperation Demonstrative Base of Metal Surface Engineering along the Silk Road”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Cheng, B., Zhang, Y. et al. Corrosion Behavior of Atmospheric Plasma-Sprayed YAG/8YSZ Double Ceramic-Layered Thermal Barrier Coatings in a Calcium–Magnesium–Alumino-Silicate Melt. J. of Materi Eng and Perform 31, 10205–10212 (2022). https://doi.org/10.1007/s11665-022-07014-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07014-w

Keywords

Navigation