Skip to main content

Advertisement

Log in

Formulation and mechanical characterization of a semi-crystalline nano-fluorine hydroxyapatite-filled dental adhesive

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The aim of this in vitro study was to evaluate the effect of adding nano-crystalline fluorine hydroxyapatite (FHAp) bioceramic into dental adhesive on the mechanical properties and bonding strength to dentin substrate. FHAp was synthesized using a sol–gel method and characterized using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Citric acid was used as the coupling agent. The fillers were added to an ethanol-based experimental dental adhesive containing Bis-GMA, TEGDMA, and HEMA (weight ratio 2:1:1). Camphorquinone (0.1%w) and ethyl-4-dimethylaminobenzoat (0.1%w) were used as photo-initiator and co-initiator for photo-polymerization at the weight ratios of 0, 0.2, 0.5, 1, and 2%. Flexural strength and modulus of photo-polymerized specimens were measured using a three-point bending test (n = 10 for each group). Degree of conversion (DC) was measured using FTIR. Microtensile bond strength test (μTBS) to bovine dentin was measured (n = 10 for each group). The data were analyzed using one-way ANOVA and Tukey post hoc tests (α = 0.05). Results showed that the maximum flexural strength and modulus were obtained by adding 0.2 and 1% FHAp, respectively. Therefore, the FHAp fillers made the adhesive stiffer but more brittle up to 1% w/w. Adding 2% fillers decreased the mechanical properties and precipitation of some fractions of fillers was observed. The SEM imaging showed an integrated interface between fillers and the resin matrix. Moreover, the DC was not affected by the filler content and all samples showed more than 98% of conversion. Maximum μTBS was obtained in 1%-filled specimen. In conclusion, adding 1% w/w FHAp bioceramic fillers may improve the bonding strength to the dentin substrate. More studies are needed to evaluate the bioactivity of FHAp-filled dental adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferracane, J.L.: Resin-based composite performance: are there some things we can’t predict? Dent Mater. 29(1), 51–58 (2013)

    Article  CAS  Google Scholar 

  2. Opdam, N., Bronkhorst, E., Loomans, B., Huysmans, M.-C.: 12-year survival of composite vs. amalgam restorations. J Dent Res. 89(10), 1063–1067 (2010)

    Article  CAS  Google Scholar 

  3. Li, F., Weir, M.D., Fouad, A.F., Xu, H.H.: Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model. Dent Mater. 30(2), 182–191 (2014)

    Article  Google Scholar 

  4. Spencer, P., Ye, Q., Park, J., Topp, E.M., Misra, A., Marangos, O., et al.: Adhesive/dentin interface: the weak link in the composite restoration. Ann Biomed Eng. 38(6), 1989–2003 (2010)

    Article  Google Scholar 

  5. Donmez, N., Belli, S., Pashley, D.H., Tay, F.: Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives. J Dent Res. 84(4), 355–359 (2005)

    Article  CAS  Google Scholar 

  6. Spencer, P., Ye, Q., Misra, A., SEDP, G., Laurence, J.: Proteins, pathogens, and failure at the composite-tooth interface. J Dent Res. 93(12), 1243–1249 (2014)

    Article  CAS  Google Scholar 

  7. Zhang, K., Wang, S., Zhou, X., Xu, H., Weir, M., Ge, Y., et al.: Effect of antibacterial dental adhesive on multispecies biofilms formation. J Dent Res. 94(4), 622–629 (2015)

    Article  CAS  Google Scholar 

  8. Cocco, A.R., da Rosa, W.L.D.O., da Silva, A.F., Lund, R.G., Piva, E.: A systematic review about antibacterial monomers used in dental adhesive systems: current status and further prospects. Dent Mater. 31(11), 1345–1362 (2015)

    Article  CAS  Google Scholar 

  9. Corrêa, J.M., Mori, M., Sanches, H.L., Cruz, A.D.D., Poiate, E., Poiate, I.A.V.P.: Silver nanoparticles in dental biomaterials. Int J Biomater. 2015, (2015). https://doi.org/10.1155/2015/485275

    Article  Google Scholar 

  10. Zhang, K., Li, F., Imazato, S., Cheng, L., Liu, H., Arola, D.D., et al.: Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater. 101(6), 929–938 (2013)

    Article  Google Scholar 

  11. Zhang, N., Weir, M.D., Romberg, E., Bai, Y., Xu, H.H.: Development of novel dental adhesive with double benefits of protein-repellent and antibacterial capabilities. Dent Mater. 31(7), 845–854 (2015)

    Article  Google Scholar 

  12. Lezaja, M., Jokic, B.M., Veljovic, D.N., Miletic, V.: Shear bond strength to dentine of dental adhesives containing hydroxyapatite nano-fillers. J Adhes Sci Technol. 30(24), 2678–2689 (2016)

    Article  CAS  Google Scholar 

  13. Leitune, V.C.B., Collares, F.M., Trommer, R.M., Andrioli, D.G., Bergmann, C.P., Samuel, S.M.W.: The addition of nanostructured hydroxyapatite to an experimental adhesive resin. J Dent. 41(4), 321–327 (2013)

    Article  CAS  Google Scholar 

  14. Sadat-Shojai, M., Atai, M., Nodehi, A., Khanlar, L.N.: Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater. 26(5), 471–482 (2010)

    Article  CAS  Google Scholar 

  15. Imazato, S., Ma, S., Chen, J.-H., Xu, H.H.: Therapeutic polymers for dental adhesives: loading resins with bio-active components. Dent Mater. 30(1), 97–104 (2014)

    Article  CAS  Google Scholar 

  16. Zhang, L., Weir, M.D., Hack, G., Fouad, A.F., Xu, H.H.: Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release. J Dent. 43(12), 1587–1595 (2015)

    Article  CAS  Google Scholar 

  17. Dionysopoulos, D., Koliniotou-Koumpia, E., Helvatzoglou-Antoniades, M., Kotsanos, N.: Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dent Mater J. 32(2), 296–304 (2013)

    Article  CAS  Google Scholar 

  18. Dionysopoulos, D., Koliniotou-Koumpia, E., Helvatzoglou-Antoniades, M., Kotsanos, N.: In vitro inhibition of enamel demineralisation by fluoride-releasing restorative materials and dental adhesives. Oral Health Prev Dent. 14(4), 371–380 (2016)

    Google Scholar 

  19. Shafiei, F., Behroozibakhsh, M., Moztarzadeh, F., Haghbin-Nazarpak, M., Tahriri, M.: Nanocrystalline fluorine-substituted hydroxyapatite [Ca 5 (PO 4) 3 (OH) 1-x F x (0⩽ x⩽ 1)] for biomedical applications: preparation and characterisation. IET Micro Nano Lett. 7(2), 109–114 (2012)

    Article  CAS  Google Scholar 

  20. Behroozibakhsh, M., Shafiei, F., Hooshmand, T., Moztarzadeh, F., Tahriri, M., Gorgani, H.B.: Effect of a synthetic nanocrystalline-fluorohydroxyapatite on the eroded enamel lesions. Dent Mater. 30, e117–e1e8 (2014)

    Article  Google Scholar 

  21. Sanosh, K.P., Chu, M.-C., Balakrishnan, A., Kim, T.N., Cho, S.-J.: Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bull Mater Sci. 32(5), 465–470 (2009)

    Article  CAS  Google Scholar 

  22. Standard I: ISO 4049 polymer based filling, restorative and luting materials. International Organization for Standardization. 2000, 1–27

  23. ASTM S: Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790-17. Annual book of ASTM Standards (2017)

  24. Yu, P., Yap, A., Wang, X.: Degree of conversion and polymerization shrinkage of bulk-fill resin-based composites. Oper Dent. 42(1), 82–89 (2017)

    Article  CAS  Google Scholar 

  25. Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J.A., Rehman, I.: Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 4(2), 432–440 (2008)

    Article  CAS  Google Scholar 

  26. Edie, D.: The effect of processing on the structure and properties of carbon fibers. Carbon. 36(4), 345–362 (1998)

    Article  CAS  Google Scholar 

  27. Zhang, S., Xianting, Z., Yongsheng, W., Kui, C., Wenjian, W.: Adhesion strength of sol–gel derived fluoridated hydroxyapatite coatings. Surf Coat Technol. 200(22), 6350–6354 (2006)

    Article  CAS  Google Scholar 

  28. Aghbolagh, Z.S., Mahjoub, A., Ghammamy, S.: Synthesis, characterization, of fluorohydroxyapatite nanopowders by sol-gel processing. Int J Nano Dimension. 5(3), 291 (2014)

    Google Scholar 

  29. López-Macipe, A., Gómez-Morales, J., Rodriguez-Clemente, R.: The role of pH in the adsorption of citrate ions on hydroxyapatite. J Colloid Interface Sci. 200(1), 114–120 (1998)

    Article  Google Scholar 

  30. Domingo, C., Arcıs, R., Osorio, E., Osorio, R., Fanovich, M.A., Rodriguez-Clemente, R., et al.: Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials. Dent Mater. 19(6), 478–486 (2003)

    Article  CAS  Google Scholar 

  31. Arcis, R.W., López-Macipe, A., Toledano, M., Osorio, E., Rodriguez-Clemente, R., Murtra, J., et al.: Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater. 18(1), 49–57 (2002)

    Article  CAS  Google Scholar 

  32. Choi, K., Condon, J., Ferracane, J.: The effects of adhesive thickness on polymerization contraction stress of composite. J Dent Res. 79(3), 812–817 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Eshghpour the Director of Student Research Center of Mashhad University of Medical Sciences, School of Dentistry.

Funding

This study was supported by the grant nos. 941233 and 950127 of Research Chancellor of Mashhad University of Medical Sciences, which is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekofteh, K., Boruziniat, A., Moghaddas, MJ. et al. Formulation and mechanical characterization of a semi-crystalline nano-fluorine hydroxyapatite-filled dental adhesive. J Aust Ceram Soc 54, 731–738 (2018). https://doi.org/10.1007/s41779-018-0203-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0203-6

Keywords

Navigation