Skip to main content
Log in

The influence of experimental conditions on photocatalytic degradation of methylene blue using titanium dioxide particle

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this research, the photocatalytic degradation of methylene blue (MB) as a dye pollutant was investigated in the presence of commercial TiO2 particles. The physical and optical characteristics of commercial TiO2 were examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and UV diffuse reflection spectroscopy (UV–DRS) techniques. In addition, the influence of different operating parameters such as catalyst loading, pH value, and temperature on the photodegradation efficiency was evaluated. The results showed that the commercial TiO2 had an anatase phase with a surface area of 9.85 m2/g and a pore size of 85 Å; its absorbance spectrum was found to be 388 nm in the UV range involving a band gap of 3.2 eV. Besides, the optimized conditions for the highest photocatalytic activity of commercial TiO2 were 0.7 g/L of TiO2 catalyst and pH 3.0 under 50 °C of temperature, which acheived ~99% of MB removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hussain, S., Maqbool, Z., Ali, S., Yasmeen, T., Imran, M., Mahmood, F., Abbas, F.: Biodecolorization of reactive black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan. Ecotoxicol Environ Saf. 98, 331–338 (2013)

    Article  Google Scholar 

  2. Mahvi, A.H., Ghanbarian, M., Nasseri, S., Khairi, A.: Mineralization and discoloration of textile wastewater by TiO2 nanoparticles. Desalination. 239, 309–316 (2009)

    Article  Google Scholar 

  3. Morimoto, R.I., Santoro, M.G.: Stress–inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 16, 833–838 (1998)

    Article  Google Scholar 

  4. Hassena, H.: Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3 nano composite under visible light. Mod Chem Appl. 4, 176 (2016)

    Google Scholar 

  5. Hahn, G.M., Shiu, E.C., West, B., Goldstein, L., Li, G.C.: Mechanistic implications of the induction of thermotolerance in Chinese hamster cells by organic solvents. Cancer Res. 45, 4138–4143 (1985)

    Google Scholar 

  6. El-Sharkawy, E.I., Soliman, A.Y., Al-Amer, K.M.: Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation. J Colloid Interf Sci. 310, 498–508 (2007)

    Article  Google Scholar 

  7. Kruanetr, S., Tan-Arsa, N., Wanchanthuek, R.: The study of methylene blue removal by using mixed TiO2 as a catalyst under solar light irradiation. Int J Sci Res Publ. 3, 1–7 (2013)

    Google Scholar 

  8. Lijuan, J., Yajun, W., Changgen, F.: Application of photocatalytic technology in environmental safety. Procedia Eng. 45, 993–997 (2012)

    Article  Google Scholar 

  9. Herrmann, J.M., Guillard, C., Pichat, P.: Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today. 17, 7–20 (1993)

    Article  Google Scholar 

  10. Nakata, K., Fujishima, A.: TiO2 photocatalysis: design and applications. J Photochem Photobiol C. 13, 169–189 (2012)

    Article  Google Scholar 

  11. Ravishankar, T.N., Ramakrishnappa, T., Nagaraju, G., Rajanaika, H.: Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen. 4, 146–154 (2015)

    Article  Google Scholar 

  12. Chen, X., Wu, Z., Liu, D., Gao, Z.: Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett. 12, 143 (2017)

    Article  Google Scholar 

  13. Pala, M., Rakshit, R., Mandal, K.: Facile functionalization of Fe2O3 nanoparticles to induce inherent photoluminescence and excellent photocatalytic activity. Appl Phys Lett. 104, 233110 (2014)

    Article  Google Scholar 

  14. Hamdi, A., Ferreira, D.P., Ferraria, A.M., Conceição, D.S., Vieira Ferreira, L.F., Carapeto, A.P., Boufi, S., Bouattour, S., Botelho do Rego, A.M.: TiO2-CdS nanocomposites: effect of CdS oxidation on the photocatalytic activity. J Nanomater. 2016, 6581691 (2016)

    Article  Google Scholar 

  15. Zhou, L., Wang, W., Liu, S., Zhang, L., Xu, H., Zhu, W.: A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A Chem. 252, 120–124 (2006)

    Article  Google Scholar 

  16. Szilágyi, I.M., Fórizs, B., Rosseler, O., Szegedi, Á., Németh, P., Király, P., Tárkányi, G., Vajna, B., Varga-Josepovits, K., László, K., Tóth, A.L., Baranyai, P., Leskelä, M.: WO3 photocatalysts: influence of structure and composition. J Catal. 294, 119–127 (2012)

    Article  Google Scholar 

  17. Xiao, Q., Zhang, J., Xiao, C., Si, Z., Tan, X.: Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol Energy. 82, 706–713 (2008)

    Article  Google Scholar 

  18. Stafford, U., Gray, K.A., Kamat, P.V., Varma, A.: An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface. Chem Phys Lett. 205, 55–61 (1993)

    Article  Google Scholar 

  19. Ajmal, A., Majeed, I., Malik, R.N., Idriss, H., Nadeem, M.A.: Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 4, 37003–37026 (2014)

    Article  Google Scholar 

  20. Hurum, D.C., Agrios, A.G., Gray, K.A.: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B. 107, 4545–4549 (2003)

    Article  Google Scholar 

  21. Fujishima, A., Rao, T.N., Tryk, D.A.: Titanium dioxide photocatalysis. J Photochem Photobiol C. 1, 1–21 (2000)

    Article  Google Scholar 

  22. Andronic, L., Duta, A.: The influence of TiO2 powder and film on the photodegradation of methyl orange. Mater Chem Phys. 12, 1078–1082 (2008)

    Article  Google Scholar 

  23. Akbal, F.: Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: effect of operational parameters. Environ Prog. 24, 317–322 (2005)

    Article  Google Scholar 

  24. Bagheri, S., Shameli, K., Hamid, S.B.A.: Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J Chem. 2013, 848205 (2013)

    Article  Google Scholar 

  25. Nam, W., Kim, J., Han, G.: Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor. Chemosphere. 47, 1019–1024 (2002)

    Article  Google Scholar 

  26. Gao, B., Ma, Y., Cao, Y., Yang, W., Yao, J.: Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. J Phys Chem B. 110, 14391–14397 (2006)

    Article  Google Scholar 

  27. Luo, M., Bowden, D., Brimblecombe, P.: Removal of dyes from water using a TiO2 photocatalyst supported on black sand. Water Air Soil Pollut. 198, 233–241 (2009)

    Article  Google Scholar 

  28. Qu, P., Zhao, J., Zang, L., Shen, T., Hidaka, H.: Enhancement of the photoinduced electron transfer from cationic dyes to colloidal TiO2 particles by addition of an anionic surfactant in acidic media. Colloids Surf A Physicochem Eng Asp. 138, 39–50 (1998)

    Article  Google Scholar 

  29. Liao, D.L., Wu, G.S., Liao, B.Q.: Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf A Physicochem Eng Asp. 348, 270–275 (2009)

    Article  Google Scholar 

  30. Bavykin, D.V., Redmond, K.E., Nias, B.P., Kulak, A.N., Walsh, F.C.: The effect of ionic charge on the adsorption of organic dyes onto titanate nanotubes. Aust J Chem. 63, 270–275 (2010)

    Article  Google Scholar 

  31. Soares, E.T., Lansarin, M.A., Moro, C.C.: A study of process variables for the photocatalytic degradation of rhodamine B. Braz J Chem Eng. 24, 29–36 (2007)

    Article  Google Scholar 

Download references

Funding

This research received financial support from Naresuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auppatham Nakaruk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuangpho, N., Trinh, D.T.T., Channei, D. et al. The influence of experimental conditions on photocatalytic degradation of methylene blue using titanium dioxide particle. J Aust Ceram Soc 54, 557–564 (2018). https://doi.org/10.1007/s41779-018-0184-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0184-5

Keywords

Navigation