Skip to main content
Log in

Removal of Dyes from Water Using a TiO2 Photocatalyst Supported on Black Sand

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A TiO2 photocatalyst was prepared by depositing silica and titanium dioxide on the surface of black sand that made the photocatalyst recoverable using a magnetic field. The magnetic photocatalyst was used to remove six aqueous dyes from water and the removal was attributed to both adsorption and photocatalytic oxidation. Removal by adsorption was more noticeable with the cationic dyes than with the anionic dyes. The difference was related to the electrostatic interaction between the charged dye molecular and the silica-occupied surface of the photocatalyst. Removal by photocatalytic oxidation occurred with anionic dyes, while it was not appreciable with cationic dyes. It was postulated that photocatalytic oxidation might have happened with cationic dyes as well, but the strong adsorption made the photocatalytic oxidation undetectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arslan, İ., Balcioğlu, I. A., & Bahnemann, D. W. (2000). Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes and Pigments, 47, 207–218. doi:10.1016/S0143-7208(00)00082-6.

    Article  CAS  Google Scholar 

  • Baran, W., Makowski, A., & Wardas, W. (2008). The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2. Dyes and Pigments, 76, 226–230. doi:10.1016/j.dyepig.2006.08.031.

    Article  Google Scholar 

  • Beydoun, D., Amal, R., Low, G. K. C., & McEvoy, S. (2000). Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution. The Journal of Physical Chemistry B, 104, 4387–4396. doi:10.1021/jp992088c.

    Article  CAS  Google Scholar 

  • Beydoun, D., Amal, R., Low, G., & McEvoy, S. (2002). Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. Journal of Molecular Catalysis A Chemical, 180, 193–200. doi:10.1016/S1381-1169(01)00429-0.

    Article  CAS  Google Scholar 

  • Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A Review. Environment International, 30, 953–971. doi:10.1016/j.envint.2004.02.001.

    Article  CAS  Google Scholar 

  • Fu, W., Yang, H., Chang, L., Hari-Bala, Li, M., & Zou, G. (2006). Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst.. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289, 47–52. doi:10.1016/j.colsurfa.2006.04.013.

    Article  CAS  Google Scholar 

  • Gao, C., Qiu, H., Zeng, W., Sakamoto, Y., Terasaki, O., Sakamoto, K., et al. (2006). Formation mechanism of anionic surfactant-templated mesoporous silica. Chemistry of Materials, 18, 3904–3914. doi:10.1021/cm061107+.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Mittal, A., Mathur, M., & Sikarwar, S. (2007). Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. Journal of Colloid and Interface Science, 309, 464–469. doi:10.1016/j.jcis.2006.12.010.

    Article  CAS  Google Scholar 

  • Jain, R., Mathur, M., Sikarwar, S., & Mittal, A. (2007). Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 85, 956–964. doi:10.1016/j.jenvman.2006.11.002.

    Article  CAS  Google Scholar 

  • Jiang, Z., Wang, H., Huang, H., & Cao, C. (2004). Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B. Chemosphere, 56, 503–508. doi:10.1016/j.chemosphere.2004.02.006.

    Article  CAS  Google Scholar 

  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710–712. doi:10.1038/359710a0.

    Article  CAS  Google Scholar 

  • Kurinobu, S., Tsurusaki, K., Natui, Y., Kimata, M., & Hasegawa, M. (2007). Decomposition of pollutants in wastewater using magnetic photocatalyst particles. Journal of Magnetism and Magnetic Materials, 310, 1025–1027. doi:10.1016/j.jmmm.2006.11.072.

    Article  Google Scholar 

  • Lee, S.-W., Drwiega, J., Mazyck, D., Wu, C.-Y., & Sigmund, W. M. (2006). Synthesis and characterization of hard magnetic composite photocatalyst—Barium ferrite/silica/titania. Materials Chemistry and Physics, 96, 483–488. doi:10.1016/j.matchemphys.2005.07.039.

    Article  CAS  Google Scholar 

  • Li, S. X., Zheng, F. Y., Liu, X. L., Wu, F., Deng, N. S., & Yang, J. H. (2005). Photocatalytic degradation of p-nitrophenol on nanometer size titanium dioxide surface modified with 5-sulfosalicylic acid.. Chemosphere, 61, 589–594. doi:10.1016/j.chemosphere.2005.02.054.

    Article  CAS  Google Scholar 

  • Ogawa, M., Shimura, N., & Ayral, A. (2006). Deposition of thin nanoporous silica layers on solid surfaces. Chemistry of Materials, 18, 1715–1718. doi:10.1021/cm0601234.

    Article  CAS  Google Scholar 

  • Qiu, W., Zheng, Y., & Haralampides, K. A. (2007). Study on a novel POM-based magnetic photocatalyst: Photocatalytic degradation and magnetic separation. Chemical Engineering Journal, 125, 165–176. doi:10.1016/j.cej.2006.08.025.

    Article  CAS  Google Scholar 

  • Reutergadh, L. B., & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere, 35, 585–596. doi:10.1016/S0045-6535(97)00122-7.

    Article  Google Scholar 

  • Saleem, M., Pirzada, T., & Qadeer, R. (2007). Sorption of acid violet 17 and direct red 80 dyes on cotton fiber from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292, 246–250. doi:10.1016/j.colsurfa.2006.06.035.

    Article  CAS  Google Scholar 

  • Shchukin, D. G., Ustinovich, E. A., Sviridov, D. V., & Kulak, A. I. (2004). Titanium and iron oxide-based magnetic photocatalysts for oxidation of organic compounds and sulfur dioxide. High Energy Chemistry, 38, 167–173. doi:10.1023/B:HIEC.0000027654.45001.00.

    Article  CAS  Google Scholar 

  • Wang, W. Y., & Ku, Y. (2007). Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 261–268. doi:10.1016/j.colsurfa.2007.02.037.

    Article  CAS  Google Scholar 

  • Wang, T., Wang, H., Xu, P., Zhao, X., Liu, Y., & Chao, S. (1998). The effect of properties of semiconductor oxide thin films on photocatalytic decomposition of dyeing waste water. Thin Solid Films, 334, 103–108. doi:10.1016/S0040-6090(98)01125-0.

    Article  CAS  Google Scholar 

  • Watson, S., Beydoun, D., & Amal, R. (2002). Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. Journal of Photochemistry and Photobiology A Chemistry, 148, 303–313. doi:10.1016/S1010-6030(02)00057-6.

    Article  CAS  Google Scholar 

  • Watson, S., Scott, J., Beydoun, D., & Amal, R. (2005). Studies on the preparation of magnetic photocatalysts. Journal of Nanoparticle Research, 7, 691–705. doi:10.1007/s11051-005-7520-8.

    Article  CAS  Google Scholar 

  • Wu, C. -H. (2004). Comparison of Azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems. Chemosphere, 57, 601–608. doi:10.1016/j.chemosphere.2004.07.008.

    Article  CAS  Google Scholar 

  • Yang, H., Coombs, N., Sokolov, I., & Ozin, G. A. (1996). Free-standing and oriented mesoporous silica films grown at the air–water interface. Nature, 381, 589–592. doi:10.1038/381589a0.

    Article  CAS  Google Scholar 

  • Zainal, Z., Hui, L. K., Hussein, M. Z., Taufiq-Yap, Y. H., Abdullah, A. H., & Ramli, I. (2005). Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps. Journal of Hazardous Materials, 125, 113–120. doi:10.1016/j.jhazmat.2005.05.013.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financed by the joint scholarship between University of East Anglia and Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, M., Bowden, D. & Brimblecombe, P. Removal of Dyes from Water Using a TiO2 Photocatalyst Supported on Black Sand. Water Air Soil Pollut 198, 233–241 (2009). https://doi.org/10.1007/s11270-008-9841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9841-6

Keywords

Navigation