Skip to main content
Log in

Phase and microstructural evolution in quartz-free porcelain tile compositions

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In the present investigation, three quartz-free porcelain compositions were prepared where quartz was fully substituted by fly ash (VPF 1) and feldspar was partly substituted by blast furnace slag (VPF 2) and basic oxygen furnace slag (VPF 3). A quartz-containing porcelain (VPQ) was also considered to compare the results with quartz-free porcelain bodies. Phase transformation and mass loss of the prepared batches were measured up to 1150 °C by simultaneous thermogravimetric and differential thermal analysis (TG-DTA). Endothermic peaks in the range of 519.27–539.01 °C were mainly due to dehydroxylation of kaolin. Exothermic peaks in the range of 814.01–1060.55 °C were attributed to mullite crystallization. No major difference was found in TG-DTA data of quartz-containing sample. Fabricated green samples were heated in the temperature range of 1100–1280 °C based on the softening point (PCE values) of the experimental bodies. Physico-mechanical properties, phase, and microstructure of the heated samples were evaluated by standard techniques. Early vitrification was observed in the case of VPF 1 and VPF 3. Quartz-containing body (VPQ) was vitrified at 1280 °C. X-ray diffraction (XRD), field emission scanning electron microscopic (FESEM), and energy dispersive X-ray analysis (EDAX) studies confirmed the presence of quartz (SiO2) and mullite (3Al2O3·2SiO2) in VPF 1 while quartz, mullite, and anorthite (CaO·Al2O3·2SiO2) were observed in VPF 2 and VPF 3. Alumina-enriched slag used in this study was contributed towards anorthite crystal formation. In quartz-containing body, major phases were found to be quartz and mullite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schuller, K.H.: The development of microstructure in silicate ceramics. I Whiteware. J. Educ. Modules Mater Sci Eng. 4(3), 529–565 (1982)

    Google Scholar 

  2. Carty, W.M., Senapati, U.: Porcelain-raw materials, processing, phase evolution and mechanical behavior. J. Am. Ceram. Soc. 81, 3–20 (1998)

    Article  Google Scholar 

  3. Iqbal, Y., Lee, W.E.: Microstructural evolution in triaxial porcelain. J. Am. Ceram. Soc. 83(12), 3121–3127 (2000)

    Article  Google Scholar 

  4. Ece, O.I., Nagakawa, Z.: Bending strength of porcelains. Ceram. Int. 28, 131–140 (2002)

    Article  Google Scholar 

  5. Ludin, S.T.: Microstructure of porcelain. Nat. Bur. Stan. U. S. A. Misc. Publ. 257, 93–106 (1964)

    Google Scholar 

  6. Wiedmann, T.: Beitrag zur Erfassung des Festigkeitsträgers im Porzellan. Sprechs. 92, 2–5 (1959)

    Google Scholar 

  7. Palatzky, A., Tummler, W.: Einige Untersuchungen zur Steigerung der mechanischen Festigkeit von Porzellanmassen. Silikattechnik. 9, 68–73 (1958)

    Google Scholar 

  8. Weyl, D.: Uber den Einfluss innerer Spannungen auf das Gefuge und die Mechaniche Fstigkeit des Porzellans. Ber Dtsch Keram Ges. 36, 319–324 (1959)

    Google Scholar 

  9. Dana, K., Das, S.K.: Evolution of microstructure in fly ash containing porcelain body on heating at different temperature. Bull. Mater. Sci. 27(2), 183–188 (2004)

    Article  Google Scholar 

  10. Dana, K., Das, S., Das, S.K.: Effect of substitution of fly ash for quartz in triaxial kaolin–quartz–feldspar system. J. Eur. Ceram. Soc. 24, 3169–3175 (2004)

    Article  Google Scholar 

  11. Kumar, S., Singh, K.K.: Effects of fly ash additions on the sintering and physico-mechanical properties of ceramic tiles. J Met Mater Process. 16, 351–358 (2004)

    Google Scholar 

  12. Dana, K., Das, S.K.: Partial substitution of feldspar by BF slag in triaxial porcelain: phase and microstructural evolution. J. Eur. Ceram. Soc. 24, 3833–3839 (2004)

    Article  Google Scholar 

  13. Dana, K., Dey, J., Das, S.K.: Synergistic effect of fly ash and blast furnace slag on the mechanical strength of traditional porcelain tiles. J. Eur. Ceram. Soc. 31, 147–152 (2005)

    Google Scholar 

  14. Dana, K., Das, S.K.: High strength ceramic floor tiles containing Indian metallurgical slag. J. Mater. Sci. Lett. 22, 387–389 (2003)

    Article  Google Scholar 

  15. Das, S.K., Pal, M., Ghosh, J., Pathi, K.V., Mondal, S.: The effect of basic oxygen furnace slag and fly ash additions in triaxial porcelain composition: phase and microstructural evolution. Trans. Indian Inst. Metals. 3, 213–220 (2013)

    Article  Google Scholar 

  16. Siddiqui, A.R., Pal, M., Bhattacharya, D., Das, S.K.: Iron and steel slag an alternative source of raw materials for porcelain ceramics. Global NEST J. 16(4), 587–596 (2014)

    Google Scholar 

  17. Pal, M.: Utilization of inorganic solid wastes generated by iron and steel industries in ceramic composition. PhD Thesis, Jadavpur University, Kolkata (2016)

  18. Pal, M., Das, S., Gupta, S., Das, S.K.: Thermal analysis and vitrification behaviour of slag containing porcelain stoneware body. J. Therm. Anal. Calorim. 124(3), 1169–1177 (2016)

    Article  Google Scholar 

  19. Martin-Marquez, J., Rincón, J.M., Romero, M.: Effect of firing temperature on sintering of porcelain stoneware tiles. Ceram. Int. 34, 1867–1873 (2008)

    Article  Google Scholar 

  20. Romero, M., Martin-Marquez, J., Rincon, J.M.: Kinetic of mullite formation from a porcelain stoneware body for tiles production. J. Eur. Ceram. Soc. 26(9), 1647–1652 (2006)

    Article  Google Scholar 

  21. Bousak, H., Chemanj, H., Serier, A.: Characterization of porcelain tableware formulation containing bentonite clay. Int J Phys Sci. 10(1), 38–45 (2015)

    Article  Google Scholar 

  22. Omani, H., Hamidouche, M., Madjoubi, M.A., Louci, K., Bouaouadja, N.: Etude de la Transformation de trois nuances de kaolin en fonction de la temperature. Silic. Ind. 65(11–12), 119–124 (2000)

    Google Scholar 

  23. Goswami, A.P., Poddar, R.K., Khattry, D.K., Lodha, A.C.: In: Banerjee, G., Das, S.K. (eds.) Refractories and furnaces—new options and new values, p. 145. Allied Publishers, New Delhi;: ISBN81-7764-109-3 (2000)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the CSIR-CGCRI and Jadavpur University for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M., Das, S.K. Phase and microstructural evolution in quartz-free porcelain tile compositions. J Aust Ceram Soc 54, 109–117 (2018). https://doi.org/10.1007/s41779-017-0132-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0132-9

Keywords

Navigation