Skip to main content

Advertisement

Log in

The Effect of Basic Oxygen Furnace Slag and Fly Ash Additions in Triaxial Porcelain Composition: Phase and Micro Structural Evolution

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Basic oxygen furnace (BOF) slag generated in iron and steel industries were gradually added in a standard triaxial vitrified porcelain tile composition substituting feldspar. Fly ash, a by product of thermal power plant was used as filler by replacing quartz in part or full. The effect of such additions on the physico-mechanical properties of the samples fabricated by ceramic processing technique and heated in the temperature range of 1,050–1,200 °C have been investigated. Out of seven compositions studied, three were selected for detailed investigation on the basis of their lower vitrification temperature. Among three, two have shown early vitrification at 1,150 °C and resulted in highest flexural strength (>70 MPa), while another one vitrified at 1,200 °C and resulted in lower strength (~55 MPa). This variation in mechanical properties is correlated with their densification behaviour, XRD and SEM data. X-Ray diffraction studies confirm the presence of anorthite (CaAl2Si2O8), mullite (Al6Si2O13), fayalite(Fe2SiO4), quartz (SiO2), enstatite(MgSiO3). The weight percentages of crystalline and glassy phases have also been calculated form Rietveld analysis of XRD data. The SEM photomicrographs on selected vitrified specimens supported the XRD observation. The paper also discusses the application of such vitrified products in construction industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carty W M, and Senapati U, J Am. Ceram Soc 81 (1998) 3.

    Article  CAS  Google Scholar 

  2. Iqbal Y, and Lee W E, J Am Ceram Soc 82 (1999) 3584.

    Article  CAS  Google Scholar 

  3. Lee W E, and Rainforth W M, Ceramic Microstructures, Chapman & Hall, London (1994).

    Google Scholar 

  4. Klein A A, Constitution and microstructure of porcelain, U.S. Government Printing Office, washington (1916) p 38.

  5. Lundin S T, Microstructure of porcelain. NBS Miscellaneous Publication, Washington (1964) 93.

  6. Iqbal Y, and Lee W E, J Am Ceram Soc 83 (2000) 3121.

    Article  CAS  Google Scholar 

  7. Schuller K H, Trans J Br Ceram Soc 63 (1964) 103.

    Google Scholar 

  8. Ece O I, and Nakagawa Z E, Ceram Int 28 (2002) 131.

    Article  CAS  Google Scholar 

  9. Braganca S R, and Bergmann C P, Ceram Int 29 (2003) 801.

    Article  CAS  Google Scholar 

  10. Zsolnay M A, J Am Ceram Soc 40 (1957) 299.

    Article  Google Scholar 

  11. Imola S, Applied Ceramic Technology, Editrice La Mandragora s.r.l., Imola (2005) 329.

  12. Johnson M, and Pask J A, Am Ceram Soc Bull 61 (1982) 838.

    CAS  Google Scholar 

  13. Pask A, and Tomsia A P, J Am Ceram Soc 74 (1991) 2367.

    Article  CAS  Google Scholar 

  14. Dana K, and Das S K, J Mater Sci Lett 22 (2003) 387.

    Article  CAS  Google Scholar 

  15. Dana K and Das S.K, J Eur Ceram Soc 24 (2004) 3833.

    Article  CAS  Google Scholar 

  16. Dana K, Dey J, and Das S K, Ceram Int 31 (2004) 147.

    Article  Google Scholar 

  17. Sarkar R, Singh N, Das S K, Waste Manag Res 25 (2007) 566.

    Article  CAS  Google Scholar 

  18. Mandal S, Chakraborti S, Ghatak S, Das S K, Industrial Ceramics 26 (2006) 53.

    CAS  Google Scholar 

  19. Mandal S, Chakraborti S, Ghatak S, and Das S K, Bull Mater Sci 28 (2005) 437.

    Article  CAS  Google Scholar 

  20. Dana K, and Das S K, Bull Mater Sci 27 (2004) 183.

    Article  CAS  Google Scholar 

  21. Marghussian V K, and Yekta B E, Br Ceram Trans 93 (1994) 141.

    CAS  Google Scholar 

  22. Das S K, Kumar S, Singh K K, and Rao P R, in Proceedings of National Seminar Energy and waste management, National Metallurgical Laboratory, Jamshedpur (1996) 86.

  23. Bandopadhyaya A, Kumar S, Das S K, and Singh K K, NML Tech J 41 (1999) 143.

    Google Scholar 

  24. Das S K, Kumar S, Ramachandrarao P, Waste Management 20 (2000) 725.

    Article  CAS  Google Scholar 

  25. Kumar S, Singh K K, J Met Mater Process 16 (2004) 351.

    CAS  Google Scholar 

  26. Tamotia S K, Processing of Chemical, Mining and Metallurgical Industries’ Wastes, POCMIW, Bhubaneswar (2003).

  27. Das S K, Characterisation of iron ore tailing and the value added ceramic products made there of for application in building industries: A review proceedings of International seminar on Waste to Wealth, New Delhi (2009) 161.

  28. Sarkar S, Singh N, and Das S K, Bull Mater Sci 28 (2005) 437.

    Article  Google Scholar 

  29. Hillebrand W F, Lundell G E F, Applied inorganic analysis, second edition, Wiley, New York (1953).

    Google Scholar 

  30. Rietveld H M, J Appl Cryst 2 (1969) 65.

    Article  CAS  Google Scholar 

  31. Young R A, in Introduction to Rietveld Method, (ed) Young R A, Oxford University Press, Oxford (1993), p 298.

  32. http://www.PANanalytical.com.

  33. Cole W F, Sorum H, and Taylor W H, Acta Crystallogr 4 (1951) 20.

    Article  CAS  Google Scholar 

  34. Lide D R, Frederikse H P R, Handbook of chemistry and physics, 74th Edn, CRC, Boca Ratou (1993) p 44.

  35. Kumar S, Singh K K, Ramchandrarao P, J Mater Sci 36 (2001) 5917.

    Article  CAS  Google Scholar 

  36. Tai W P, Kimura K, and Jinnai K, J Eur Ceram Soc 22 (2002) 463.

    Article  CAS  Google Scholar 

  37. Taskiran M U, Demirko N, and Capoglu A, J Eur Ceram Soc 25 (2005) 293.

    Article  CAS  Google Scholar 

  38. Ryu B, and Yasui I, J Mater Sci 29 (1994) 3323.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Director CSIR-CGCRI and Management of RINL, VSP for their kind permission to publish this paper. The authors also wish to thank Dr. (Mrs.) Sudakshina Roy and Mr. S. Dalui of CSIR-CGCRI for helping us in conducting SEM study and flexural strength determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.K., Pal, M., Ghosh, J. et al. The Effect of Basic Oxygen Furnace Slag and Fly Ash Additions in Triaxial Porcelain Composition: Phase and Micro Structural Evolution. Trans Indian Inst Met 66, 213–220 (2013). https://doi.org/10.1007/s12666-013-0245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-013-0245-y

Keywords

Navigation