Skip to main content

Advertisement

Log in

Destructive and non-destructive behavior of nickel oxide doped bioactive glass and glass-ceramic

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Nickel oxide substituted bioactive glasses (45S5) have been prepared by melting and annealing techniques. The doping of Ni2+ ion from 0 to 1.65 mol% of NiO was done to replace Si4+ ion and yield a charge balanced (CB) bioactive glass. The Ni2+ ion would enter into [SiO4]4− network as [NiO4]2− tetrahedra due similar charge/size ratio, but depending upon oxygen environment, it may act as modifier also in octahedral coordination in the glass. Polycrystalline bioactive glass-ceramics were prepared through controlled heat treatment. The glass and glass-ceramic structure was evaluated using FTIR and XRD techniques. The crystalline phases in bioactive glass-ceramics were identified using X-ray difractometry. The SEM micrographs of the samples after chemical treatment with simulated body fluid (SBF) for definite time of 15 days had shown the formation of hydroxyl carbonate apatite (HCP) layer on their surface which indicated that NiO had no opposite effect on the overall bioactivity. The destructive tests like microhardness, compressive, flexural strengths, and the non-destructive tests of elastic moduli were carried out. Both the results indicated that substitution of nickel oxide by silica in 45S5 bioactive glass and glass-ceramic influenced the structure and enhanced its density, compressive, flexural strength, micro hardness, and elastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanism at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. Symp. 2, 117–141 (1971)

    Article  Google Scholar 

  2. Hench, L.L., Paschall, H.A.: J. Biomed. Mater. Res. 7, 25–42 (1973)

    Article  Google Scholar 

  3. Ogino, M., Hench, L.L.: J. Non-Cryst. Solids. 2, 673–678 (1980)

    Article  Google Scholar 

  4. Hench, L.L.: Ceram. Int. 8842(95), 493–507 (1996)

    Google Scholar 

  5. Xynos, I.D., Hukkanen, M.V.J., Batten, J.J., Buttery, L.D., Hench, L.L.,Polak, J.M., Bioglass 45S5: Stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering, pp. 321–329. New York (2000)

  6. Gough, J.E., Notingher, I., Hench, L.L.: J. Biomed. Mater. Res. A. 68, 640–650 (2004)

    Article  Google Scholar 

  7. Christodoulou, I., Buttery, L.D.K., Saravanapavan, P., Tai, G., Hench, L.L., Polak, J.M.: J Biomed Mater Res B Appl Biomater. 74, 529–537 (2005)

    Article  Google Scholar 

  8. Christodoulou, I., Buttery, L.D.K., Tai, G., Hench, L.L., Polak, J.M.: J Biomed Mater Res B Appl Biomater. 77, 431–446 (2006)

    Article  Google Scholar 

  9. Shi Ed, D.: Biomaterials and Tissue Engineering, Fist Edition, XI, USA. pp 246 (2004)

  10. Lin, C.C., Huang, L.C., Shen, P.: J. Non-Cryst. Solids. 351, 3195–3203 (2005)

    Article  Google Scholar 

  11. Kannappan, A.N., Thirumaran, S., Palani, R.: ARPN J. Eng. Appl. Sci. 4, 1 (2009)

    Google Scholar 

  12. Srivastava, A.K., Pyare, R., Singh, S.P.: Int. J. Sci. Eng. Res. 3, 1–13 (2012)

    Google Scholar 

  13. Vaills, Y., Luspin, Y., Hauret, G., Cott, B.: Solid State Commun. 87, 1097 (1993)

    Article  Google Scholar 

  14. Burkhard, D.J.M.: Solid State Commun. 101, 903–907 (1997). doi:10.1063/1.2403127

    Article  Google Scholar 

  15. Nychka, J.A., Mazur, S.L.R., Kashyap, S., Li, D., Yang, F.: J. Miner. Met. Mater. Soc. 61(9), 45–51 (2009)

    Article  Google Scholar 

  16. Kodamma, M.: Ultrasonic velocityinsodium borate glasses, pp. 4048–4053. Chapmanand Hall ltd. (1991)

  17. Bhatti, S.S., Singh, A.P.: Attenuation and velocity of ultrasonic waves instrontiumborate glasses andtheir elastic properties. Acoustica. 68, 181–182 (1989)

    Google Scholar 

  18. Paul, A.P.S.A., Bhatti, S.S.: Ultrasonic absorption and velocity measurements in bariumborate glasses and their elastic properties. Ind. J. Pure Appl. Phys. 1990, 483–485 (1990)

    Google Scholar 

  19. Abd, E.-M.I.S., YousoofIM, A.E.-D.: Phys. Status Solidi. 199, 192–201 (2003)

    Article  Google Scholar 

  20. Srivastava, A.K., Pyare, R., Singh, S.P.: Int. J. Sci. Eng. Res. 3(2), 1–15 (2012)

  21. Smith, J.M., Martin, R.A., Cuelloc, G.J., Newporta, R.J.: J. Mater. Chem. B. 1, 1296–1303 (2013)

    Article  Google Scholar 

  22. Arepalli, S.K., Tripathi, H., Vyas, V.K., Jain, S., Suman, S.K., Pyare, R., Singh, S.P.: Mater. Sci. Eng. C. 49, 549–559 (2015)

    Article  Google Scholar 

  23. Tripathi, H., Sampath Kumar, A., Singh, S.P.: Preparation and characterization of Li2O–CaO–Al2O3–P2O5–SiO2 glasses as bioactive material. Bull. Mater. Sci. 39(2), 365–376 (2016) c Indian Academy of Sciences

    Article  Google Scholar 

  24. Gaafar, M.S., ElBatal, F.H., ElGazery, M., Mansour, S.A.: Acta Phys. Pol. A. 115, 671–678 (2009)

    Article  Google Scholar 

  25. Kumar, S.: Cent. Glass. Cera. Rec. Inst. Bull. 6(3), 99–126 (1959)

    Google Scholar 

  26. Bamford, C.R.: Phys. Chem. Glasses. 3(6), 189–202 (1962)

    Google Scholar 

  27. Bates, T.: Modern aspects of the vitreons state. In: Mackenzie, J.D., (ed.) pp. 195–243. Butterworths, London (1962)

  28. Paul, A.J.: Mater. Sci. 10(3), 422–426 (1975)

    Article  Google Scholar 

  29. The hand book of glass manufacture, Fay, V. Tooley, Volume-I, pp. 37–38. Ogden Publishing Company, New York (1960)

  30. Turner, W.A., Turner, J.A.: J. Am. Ceram. Soc. 56(4), 201–207 (1972)

    Article  Google Scholar 

  31. Paul, A., Douglas, R.W.: Phys. Chem. Glasses. 8(6), 233–237 (1967)

    Google Scholar 

  32. Shreiber, H.D., Harville, T.R., Damron, G.N.: J. Am. Ceram. Soc. 73(5), 1435–1437 (1990)

    Article  Google Scholar 

  33. Singh, R.S., Singh, S.P.: Phys. Chem. Glasses. 39, 140–144 (1998)

    Google Scholar 

  34. Singh, R.S., Singh, S.P.: Thermodynamic activity of nickel oxide in alkali silicate glasses. Phys. Chem. Glass. 40, 4 (1999)

    Google Scholar 

  35. Pretorius, E.B., Muan, A.: Activity of nickel (II) oxides in silicatemells. J. Am. Ceram. Soc. 75(6), 1490–1496 (1992)

    Article  Google Scholar 

  36. Chemistry of glass, Second Edition, pp. 233–236. Chapman and Hall (1990)

  37. Singh, R.S., Singh, S.P.: Thermodynamic activity of cuprous-cupric redox oxides in alkali copper silicate glasses. J. Mater. Sci. 38, 1551–1557 (2003)

    Article  Google Scholar 

  38. Singh, R.S., Singh, S.P.: Thermodynamic activity of oxides of vanadium in sodium borovanadate glass. Trans. Indian Ceram. Soc. 59(4), 78–80 (2000)

    Article  Google Scholar 

  39. Suresh, B., Srinivasa Redddy, M., Siva Sesha Reddy, A., Gandhi, Y., Ravi Kumar, V., Veeraiah, N.: Spectroscopic features of Nib+ ion in PbO-Bi2O3-SiO2 glass system. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2015). doi:10.1016/j.saa.2015.01.058

  40. Baak, T., Hornyak Jr., E.J.: Iron-oxygen equilibrium in glass effect of platinum on Fe2+/Fe3+ equilibrium. J. Am. Ceram. Soc. 44(11), 541–544 (1961)

    Article  Google Scholar 

  41. Majhi, M.R., Kumar, R., Singh, S.P., Pyare, R.: Physico-chemical properties and characterization of CaO-Fe2O3-P2O5 glass as a bioactive ceramic material. J. Biomimetics Biomater. Tissue Eng. 12, 1–24 (2011)

    Article  Google Scholar 

  42. Kokubo, T., Takadama, H.: Biomaterials. 27, 2907–2915 (2006)

    Article  Google Scholar 

  43. Azevedo, M.M., Jell, G., O'Donnell, M.D., Law, R.V., Hill, R.G., Stevens, M.M., Mater, J.: Chemistry. 20, 8854–8864 (2010)

    Google Scholar 

  44. Zachariasen, W.H.: J. Am. Chem. Soc. 54, 3841–3851 (1932). doi:10.1021/ja01349a006

    Article  Google Scholar 

  45. Warren, B.E.: J. Am. Ceram. Soc. 21, 259–265 (1938). doi:10.1117/12.853942

    Article  Google Scholar 

  46. Dietzel, A.: Z. Electrochem. 48, 9–23 (1942)

    Google Scholar 

  47. Nayak, J.P., Kumar, S., Bera, J.: J. Non-Cryst. Solids. 356, 1447–1451 (2010)

    Article  Google Scholar 

  48. Shrivastava, A.K., Pyare, R.: J. Biomater. Tissue Eng. 2, 207–220 (2012)

    Google Scholar 

  49. Mourino, V., Cattalini, J.P., Boccaccini, A.R.: J. R. Soc. Interface. 68, 401–419 (2012)

    Article  Google Scholar 

  50. Kannappan, A.N., Thirumaran, S., Palani, R.: ARPN J. Eng. Appl. Sci. 4, 27–31 (2009)

    Google Scholar 

  51. Vyas, V.K., Kumar, A.S., Singh, S.P., Pyare, R.: Effect of cobalt oxide substitution on Mechanica behaviour and elastic properties of bioactive glass and glass-ceramics. Trans. Ind. Ceram. Soc. 75(1), 1–8 (2016) The Indian Ceramic Society

    Article  Google Scholar 

  52. Kokubo, T., Kim, H.-M., Kawashita, M.: Biomaterials. 24, 2161–2175 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the HOD Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005, India and the honorable Director of Indian Institute of Technology (Banaras Hindu University) Varanasi, India for providing necessary facilities for the present work. The author, Vikash Kumar Vyas, is also very much grateful to the University Grants Commission, New Delhi, India (RGNF-SC-UTT-2012-13-25709) for providing the Rajiv Gandhi National Fellowship for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikash Kumar Vyas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, V.K., Kumar, A.S., Singh, S.P. et al. Destructive and non-destructive behavior of nickel oxide doped bioactive glass and glass-ceramic. J Aust Ceram Soc 53, 939–951 (2017). https://doi.org/10.1007/s41779-017-0110-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0110-2

Keywords

Navigation