Skip to main content
Log in

Effect of nickel oxide substitution on bioactivity and mechanical properties of bioactive glass

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A small amount of nickel oxide is doped in bioglass®; system and it is replaced by silica. The use of 45S5 glass composition is one such material able to bond strongly to bone within 42 days. The 45S5 bioglass®; system develops a hydroxyl carbonate apatite (HCA) layer, which is chemically and crystallographically similar to mineral phase of bone. But it has low fracture toughness and mechanical weakness due to an amorphous glass network and it is not compatible for load-bearing applications. In the present work, the effect of addition of nickel oxide that annualizes the improvement in its mechanical strength and bioactivity is studied. Bioactivity of base glass and doped glass samples were tested through their HCA abilities by immersing them in simulated body fluid (SBF) for different days. The formation of HCA was confirmed by FTIR spectroscopy and pH measurement. Densities and mechanical properties of samples were also increased considerably by increasing the concentration of nickel oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Hench L L, Splinter R J, Allen W C and Greenlee T K 1971 J. Biomed. Mater. Res. 5 117

    Article  Google Scholar 

  2. Hench L L and Anderson O 1993 An introduction to bioceramic (Singapore: World Scientific) p 41

  3. Zhong J P and Greenspan D C 1998 in Bioceramic 11 (ed.) R Z Legeros (Singapore: World Scientific) p. 415

  4. Neo M, Kotani S, Fujita Y, Nakamura T and Yamamuro T 1992 J. Biomed. Mater. Res. 26 1419

    Article  Google Scholar 

  5. Oonishi H, Hench L L, Wilson J, Sugihara E T., Matsuura M et al 2000, ibid 51 37

    Google Scholar 

  6. Ducheyne P and Qiu Q 1999 Biomaterials 20 2287

    Article  Google Scholar 

  7. Hench L L 1991 J. Am. Ceram. Soc. 74 1487

    Article  Google Scholar 

  8. Leonor I B, Sousa R A, Cunha A M, Reis R L, Zhong Z P and Greenspan D 2002 J. Mater. Sci. Mater. Med. 13 939

    Article  Google Scholar 

  9. Cabal B, Malpartida F, Torrecillas R, Hoppe A, Boccaccini A R and Moya J S 2011 Adv. Eng. Mater. 13 B462

    Article  Google Scholar 

  10. Padmanabhann S K, Gervaso F, Carrozzo M, Scalera F, Sannino A and Licciulli A 2013 Ceram. Int. 39 619

    Article  Google Scholar 

  11. Vitale-Brovarone C, Nunzio S D, Bretcanu O and Vern E 2004 J. Mater. Sci. Mater. Med. 15 209

    Article  Google Scholar 

  12. Martorana S, Fedele A, Mazzocchi M and Bellosi A 2009 Appl. Surf. Sci. 255 6679

    Article  Google Scholar 

  13. Singh V K and Reddy B R 2012 Ceram. Int. 38 5333

    Article  Google Scholar 

  14. Simon V, Lucacel R C, Titorencu I and Jinga V 2011 Key Eng. Mater. 1463 85

    Article  Google Scholar 

  15. Soares P, Laurindo C A H, Torres R, Kuromoto N, Peitl O and Zanotto E 2012 Surf. Coat. Technol. 206 4601

    Article  Google Scholar 

  16. Hench L L, Splinter R J, Allen W C and Greenlee T K 1971 J. Biomed. Mater. Res. Symp. (Part 1) 4 117

    Article  Google Scholar 

  17. Hench L L 1991 J. Am. Ceram. Soc. 74 1487

    Article  Google Scholar 

  18. Hench L L and Paschall H A 1974 J. Biomed. Mater. Res. Symp. (Part 1) 5 49

    Article  Google Scholar 

  19. Hench L L 1997 Curr. Opin. Solid State Mater. Sci. 2 604

    Article  Google Scholar 

  20. Castillo J, Yanes A C, Méndez-Ramos J, Velázquez J J and Rodríguez V D 2011 J. Sol–Gel Sci. Technol. 60 170

    Article  Google Scholar 

  21. Assem E E 2005 J. Phys. D Appl. Phys. 38 942

    Article  Google Scholar 

  22. Sanada T, Seto H, Morimoto Y, Yamamoto K, Wada N and Kojima K 2010 J. Sol–Gel Sci. Technol. 56 82

    Article  Google Scholar 

  23. Ghasemzadeh M, Nemati A and Baghshahi S 2012 J. Eur. Ceram. Soc. 32 2989

    Article  Google Scholar 

  24. Sampath Kumar A, Tripathi H, Vyas V K, Jain S, Suman S K, Rana P. and Singh S P 2015 Mater. Sci. Eng. C 49 549

    Article  Google Scholar 

  25. Vyas V K, Sampath Kumar A, Prasad S, Singh S P and Ram P. 2015, Bull. Mater. Sci. 38 957

    Article  Google Scholar 

  26. Azevedo M M, Jell G, O’Donnell M D, Law R V, Hill R G and Stevens M M 2010 J. Mater. Chem. 20 8854

    Article  Google Scholar 

  27. Smith J M, Martin R A, Cuelloc G J and Newporta R J 2013 J. Mater. Chem. B 1 1296

    Article  Google Scholar 

  28. Kokubo T and Takadama H 2006 Biomaterials 27 2907

    Article  Google Scholar 

  29. Nayak J P, Kumar S and Bera J 2010 J. Non-Cryst. Solids 356 1447

    Article  Google Scholar 

  30. Cerrutia M, Greenspanb D and Powers K 2005 Biomaterials 26 1665

    Article  Google Scholar 

  31. Hench L L 1998 J. Am. Ceram. Soc. 81 1705

    Article  Google Scholar 

  32. Mastelaro V R, Zanotto E D, Lequeux N and Cortes R 2000 J. Non-Cryst. Solids 262 191

    Article  Google Scholar 

  33. Ducheyne P and Qiu Q 1999 Biomaterials 20 2287

    Article  Google Scholar 

  34. Hench L L 1998 J. Am. Ceram. Soc. 81 1705

    Article  Google Scholar 

  35. Kokubo T, Kim H -M and Kawashita M 2003 Biomaterials 24 2161

    Article  Google Scholar 

  36. Rehman I, Karsh M, Hench L L and Bonfield W 2000 , J. Biomed. Mater. Res. 50 97

    Article  Google Scholar 

  37. Mastelaro V R, Zanotto E D, Lequeux N and Cortes R 2000 J. Non-Cryst. Solids 262 191

    Article  Google Scholar 

  38. Ducheyne P and Qiu Q 1999 Biomaterials 20 2287

    Article  Google Scholar 

  39. Srivastava A K, Pyare R and Singh S P 2012 Int. J. Sci. Eng. Res. 3 1

    Google Scholar 

  40. Srivastava A K and Pyare R 2012 Int. J. Sci. Technol. Res. 1 28

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the HOD, Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India and the honourable Director of Indian Institute of Technology (Banaras Hindu University), Varanasi, India, for providing necessary facilities for the present work. The author, Vikash Kumar Vyas is also very much grateful to the University Grants Commission, New Delhi, India (RGNF-SC-UTT-2012-13-25709) for providing the Rajiv Gandhi National Fellowship for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VIKASH KUMAR VYAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VYAS, V.K., KUMAR, A.S., SINGH, S.P. et al. Effect of nickel oxide substitution on bioactivity and mechanical properties of bioactive glass. Bull Mater Sci 39, 1355–1361 (2016). https://doi.org/10.1007/s12034-016-1242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1242-7

Keywords

Navigation