Skip to main content
Log in

Mass Spectrometry and Mass Spectrometry Imaging-based Thyroid Cancer Analysis

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Thyroid carcinoma is one of the most common endocrine malignant diseases worldwide. With the rapid development of medical technology, early and effective diagnostic methods could be able to improve the survival rate and quality of life of patients suffering from the disease. Considering the complexity of cancer, some specific detection method is desired for diagnosis and treatment. Mass spectrometry imaging (MSI) is an emerging technique for acquiring molecular information from biological tissues without staining and labeling, including qualitative, quantitative and spatial distribution information. Over the past several decades, MSI has been widely used for pharmacological monitoring, biomolecular imaging of cells and tissues. In this review, we introduce the tumor progression and histological characteristics of thyroid cancer, and focus mainly on the preparation of biological specimens for MSI and mass spectrometry (MS) analysis, as well as the recent progress in MS and MSI-based thyroid cancer research. This review thoroughly discusses the importance of MS and MSI for clinical diagnosis, identification and prognosis of thyroid cancer, and provides some new clues for molecular mechanisms research and tumor metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [38, 39]. Copyright 2019, Elsevier. Reproduced with permission from Ref. [40]. Copyright 2021, Histology and Histopathology

Fig. 2

Reproduced with permission from Ref. [44]. Copyright 2019, Elsevier

Fig. 3

Reproduced with permission from Ref. [58]. Copyright 2019, Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [46]. Copyright 2016, American Association for Cancer Research

Fig. 5

Reproduced with permission from Ref. [61]. Copyright 2019, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [65]. Copyright 2019, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [47]. Copyright 2019, Korean Academy of Medical Science

Fig. 8

Reproduced with permission from Ref. [74]. Copyright 2019, Frontiers Media S.A.

Similar content being viewed by others

References

  1. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388(10061):2783–95.

    Article  CAS  PubMed  Google Scholar 

  2. Takano T. Overdiagnosis of Juvenile thyroid cancer. Euro Thyroid J. 2020;9(3):124–31.

    Article  Google Scholar 

  3. Leimbach RD, Hoang TD, Shakir MKM. Diagnostic challenges of medullary thyroid carcinoma. Oncology. 2021;99:422–32.

    Article  CAS  PubMed  Google Scholar 

  4. Abu-Salah AK, Segura S, Mesa H. Cytomorphologic findings of thyroid carcinoma showing thymus-like (CASTLE) differentiation: a case report. Am J Clin Pathol. 2021;156:S42–S42.

    Article  Google Scholar 

  5. Ucal Y, Tokat F, Duren M, Ince U, Ozpinar A. Peptide profile differences of noninvasive follicular thyroid neoplasm with papillary-like nuclear features, encapsulated follicular variant, and classical papillary thyroid carcinoma: an application of matrix-assisted laser desorption/ionization mass spectrometry imaging. Thyroid. 2019;29(8):1125–37.

    Article  CAS  PubMed  Google Scholar 

  6. Caracciolo G, Vali H, Moore A, Mahmoudi M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today. 2019;27:6–10.

    Article  Google Scholar 

  7. Rohrmoser A, Pichler T, Letsch A, Westphalen CB, Keilholz U, Heinemann V, Goerling U, Herschbach P. Cancer patients’ expectations when undergoing extensive molecular diagnostics-a qualitative study. Psychooncology. 2020;29(2):423–9.

    Article  PubMed  Google Scholar 

  8. Kwon T, Gunasekaran S, Eom K. Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells. Biochimica Et Biophysica Acta-Rev Cancer. 2019;1871(2):367–78.

    Article  CAS  Google Scholar 

  9. Li G, Zhang R, Wei M, Yin C, Sun J, Zhang Y. Lensfree diffraction reconstruction approach enables early detection of cancer in vitro based on molecular diagnosis. ACS Sensors. 2020;5(10):3091–8.

    Article  CAS  PubMed  Google Scholar 

  10. Deisseroth AB, Kantarjian H, Talpaz M, Champlin R, Reading C, Hanania EG, Fu S, Randhawa GS, Cha Y, Fang X. Molecular approaches to the diagnosis and treatment of cancer. Stem Cells (Dayton, Ohio). 1993;11(Suppl 3):129–30.

    Article  Google Scholar 

  11. McDonnell LA, Angel PM, Lou S, Drake RR. Mass spectrometry imaging in cancer research: future perspectives. In: Applications of mass spectrometry imaging to cancer. Advances in cancer research. USA: Academic Press Inc; 2017. p. 283–90.

    Chapter  Google Scholar 

  12. Zhang J, Sans M, Garza KY, Eberlin LS. Mass spectrometry technologies to advance care for cancer patients in clinical and intraoperative use. Mass Spectrom Rev. 2021;40(5):692–720.

    Article  PubMed  Google Scholar 

  13. Buck A, Aichler M, Huber K, Walch A. In situ metabolomics in cancer by mass spectrometry imaging. In: Applications of mass spectrometry imaging to cancer Advances in cancer research. USA: Academic Press Inc; 2017. p. 117–32.

    Chapter  Google Scholar 

  14. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  15. Hu JW, Isabella JY, Mirshahidi S, Simental A, Steve CL, Yuan XP. Thyroid carcinoma: phenotypic features, underlying biology and potential relevance for targeting therapy. Int J Mol Sci. 2021;22:1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pusztaszeri M, Auger M. Update on the cytologic features of papillary thyroid carcinoma variants. Diagn Cytopathol. 2017;45:714–30.

    Article  PubMed  Google Scholar 

  17. Li Volsi VA, Baloch ZW. Follicular-patterned tumors of the thyroid: the battle of benign vs. malignant vs. so-called uncertain. Endocr Pathol. 2011;22:184–9.

    Article  Google Scholar 

  18. Ceolin L, Duval M, Benini AF, Ferreira CV, Maia AL. Medullary thyroid carcinoma beyond surgery: advances, challenges, and perspectives. Endocr-Relat Cancer. 2019;26:R499–518.

    Article  CAS  PubMed  Google Scholar 

  19. Volante M, Lam AK, Papotti M, Tallini G. Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know. Endocr Pathol. 2021;32(1):63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giovanella L, Ceriani L, Treglia G. Role of isotope scan, including positron emission tomography/computed tomography, in nodular goitre. Best Pract Res Cl En. 2014;28(4):507–18.

    Article  Google Scholar 

  21. Castellana M, Castellana C, Treglia G, Giorgino F, Giovanella L, Russ G, Trimboli P. Performance of five ultrasound risk stratification systems in selecting thyroid nodules for FNA. J Clin Endocr Metab. 2020;105(5):1659–69.

    Article  Google Scholar 

  22. Liu BJ, Lu F, Xu HX, Guo LH, Li DD, Bo XW, Li XL, Zhang YF, Xu JM, Xu XH, Qu S. The diagnosis value of acoustic radiation force impulse (ARFI) elastography for thyroid malignancy without highly suspicious features on conventional ultrasound. Int J Clin Exp Med. 2015;8(9):15362–72.

    PubMed  PubMed Central  Google Scholar 

  23. Giovanella L, Aurizio FD’, Campenní A, Ruggeri RM, Baldari S, Verburg FA, Trimboli P, Ceriani L. Searching for the most effective thyrotropin (TSH) threshold to rule-out autonomously functioning thyroid nodules in iodine defificient regions. Endocrine. 2016;54(3):757–61.

    Article  CAS  PubMed  Google Scholar 

  24. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Steven I, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stanek-Widera A, Biskup-Frużyńska M, Zembala-Nożyńska E, Śnietura M, Lange D. The diagnosis of cancer in thyroid fine needle aspiration biopsy. Surgery, repeat biopsy or specimen consultation? Pol J Pathol. 2016;67(1):19–23.

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Wang Q, Wang LL, Wang J, Wang DX, Xin ZQ, Liu YL, Zhao QH. Diagnostic value of fine-needle aspiration combined with ultrasound for thyroid cancer. Oncol Lett. 2019;18(3):2316–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang PZ, Ren CY, Shen LJ, Zhou ZR. Development and validation of a diagnostic nomogram for the preoperative differentiation between follicular thyroid carcinoma and follicular thyroid adenomas. J Comput Assist Tomo. 2021;45(1):128–34.

    Article  Google Scholar 

  28. Xavier JCC, Cannilo DJ, D’Avil S, Mattar NJ. Fine-needle aspiration of the Warthin-like variant of papillary thyroid carcinoma: a report of three cases. Diagn Cytopathol. 2019;47(12):1293–6.

    Article  Google Scholar 

  29. Nath MC, Erickson LA. Aggressive variants of papillary thyroid carcinoma: hobnail, tall cell, columnar, and solid. Adv Anat Pathol. 2018;25(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  30. Guo ZY, Ge MH, Chu YH, Asioli S, Lloyd RV. Recent advances in the classification of low-grade papillary-like thyroid neoplasms and aggressive papillary thyroid carcinomas: evolution of diagnostic criteria. Adv Anat Pathol. 2018;25(4):263–72.

    Article  PubMed  Google Scholar 

  31. Ambrosi F, Righi A, Ricci C, Erickson LA, Lloyd RV, Asioli S. Hobnail variant of papillary thyroid carcinoma: a literature review. Endocr Pathol. 2017;28(4):293–301.

    Article  CAS  PubMed  Google Scholar 

  32. Huang CC, Hsueh C, Liu FH, Chao TC, Lin JD. Diagnostic and therapeutic strategies for minimally and widely invasive follicular thyroid carcinomas. Surg Oncol. 2011;20(1):1–6.

    Article  PubMed  Google Scholar 

  33. Gertz R, Sarda R, Lloyd R. Follicular thyroid carcinoma presenting as a massive chest wall tumor. Endocr Pathol. 2013;24(1):20–4.

    Article  PubMed  Google Scholar 

  34. Clerici T, Kolb W, Beutner U, Bareck E, Dotzenrath C, Kull C, Niederle B. Diagnosis and treatment of small follicular thyroid carcinomas. Brit J Surg. 2010;97(6):839–44.

    Article  CAS  PubMed  Google Scholar 

  35. Ryska A, Cap J, Vaclavikova E, Dvorakova S, Bendlova B, Hovorkova E, Kohout A. Paraganglioma-like medullary thyroid carcinoma: fine needle aspiration cytology features with histological correlation. Cytopathology. 2009;20(3):188–94.

    Article  CAS  PubMed  Google Scholar 

  36. Machens A, Lorenz K, Dralle H. Histology-proven recurrence in the lateral or central neck after systematic neck dissection for medullary thyroid cancer. Endocrine. 2018;61(3):428–39.

    Article  CAS  PubMed  Google Scholar 

  37. Kebebew E. Anaplastic thyroid cancer: rare, fatal, and neglected. Surgery. 2012;152(6):1088–9.

    Article  PubMed  Google Scholar 

  38. Asa SL. The current histologic classification of thyroid cancer. Endocrin Metab Clin. 2019;48(1):1–22.

    Article  Google Scholar 

  39. Smith A, Galli M, Piga I, Denti V, Stella M, Chinello C, Fusco N, Leni D, Manzoni M, Roversi G, Garancini M, Pincelli AI, Cimino V, Capitoli G, Magni F, Pagni F. Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. J Proteomics. 2019;191:114–23.

    Article  CAS  PubMed  Google Scholar 

  40. Abe I, Lam AKY. Anaplastic thyroid carcinoma: Updates on WHO classification, clinicopathological features and staging. Histol Histopathol. 2021;36(3):239–48.

    PubMed  Google Scholar 

  41. Zhao C, Yong T, Zhang YB, Xiao Y, Jin YF, Zheng C, Nirasawa T, Cai ZW. Breast cancer proliferation and deterioration-associated metabolic heterogeneity changes induced by exposure of bisphenol S, a widespread replacement of bisphenol A. J Hazard Mater. 2021;414:125391.

    Article  CAS  PubMed  Google Scholar 

  42. Pietrowska M, Diehl HC, Mrukwa G, Herok MK, Gawin M, Chekan M, Elm JL, Drazek G, Krawczyk A, Lange D, Meyer HE, Polanska J, Henkel C, Widlak P. Molecular profiles of thyroid cancer subtypes: classification based on features of tissue revealed by mass spectrometry imaging. BBA-Proteins Proteom. 2017;1865(7):837–45.

    Article  CAS  Google Scholar 

  43. Xie PS, Zhao C, Liang XP, Huang W, Chen YY, Cai ZW. Preparation of frozen sections of multicellular tumor spheroids coated with ice for mass spectrometry imaging. Anal Chem. 2020;92(11):7413–8.

    Article  CAS  PubMed  Google Scholar 

  44. Han JY, Permentier H, Bischoff R, Groothuis G, Casini A, Horvatovich P. Imaging of protein distribution in tissues using mass spectrometry: an interdisciplinary challenge. TrAC-Trend Anal Chem. 2019;112:13–28.

    Article  CAS  Google Scholar 

  45. Kultima K, Sköld K, Borén M. Biomarkers of disease and post-mortem changes — heat stabilization, a necessary tool for measurement of protein regulation. J Proteomics. 2011;75:145–59.

    Article  CAS  PubMed  Google Scholar 

  46. Wang SS, Wang YJ, Zhang J, Sun TQ, Guo YL. Derivatization strategy for simultaneous molecular imaging of phospholipids and low-abundance free fatty acids in thyroid cancer tissue sections. Anal Chem. 2019;91(6):4070–6.

    Article  CAS  PubMed  Google Scholar 

  47. Min KW, Bang JY, Kim KP, Kim WS, Lee SH, Shanta SR, Lee JH, Hong JH, Lim SD, Yoo YB, Na CH. Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins. J Korean Med Sci. 2014;29(7):934–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Capitoli G, Piga I, Galimberti S, Leni D, Pincelli AI, Garancini M, Clerici F, Mahajneh A, Brambilla V, Smith A, Magni F, Pagni F. MALDI-MSI as a complementary diagnostic tool in cytopathology: a pilot study for the characterization of thyroid nodules. Cancers. 2019;11(9):1377.

    Article  CAS  PubMed Central  Google Scholar 

  49. DeHoog RJ, Zhang J, Alore E, Lin JQ, Yu WD, Woody S, Almendariz C, Lin M, Engelsman AF, Sidhu SB, Tibshirani R, Suliburk J, Eberlin LS. Preoperative metabolic classification of thyroid nodules using mass spectrometry imaging of fine-needle aspiration biopsies. Proc Natl Acad Sci USA. 2019;116(43):21401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kurczyk A, Gawin M, Chekan M, Wilk A, Łakomiec K, Mrukwa G, Frątczak K, Polanska J, Fujarewicz K, Pietrowska M, Widlak P. Classification of thyroid tumors based on mass spectrometry imaging of tissue microarrays; a single-pixel approach. Int J Mol Sci. 2020;21(17):6289.

    Article  CAS  PubMed Central  Google Scholar 

  51. Gawin M, Kurczyk A, Stobiecka E, Frątczak K, Polańska J, Pietrowska M, Widłak P. Molecular heterogeneity of papillary thyroid cancer: comparison of primary tumors and synchronous metastases in regional lymph nodes by mass spectrometry imaging. Endocr Pathol. 2019;30(4):250–61.

    Article  CAS  PubMed  Google Scholar 

  52. Wojakowska A, Cole LM, Chekan M, Bednarczyk K, Maksymiak M, Wojciechowska MO, Jarząb B, Clench MR, Polańska J, Pietrowska M, Widlak P. Discrimination of papillary thyroid cancer from non-cancerous thyroid tissue based on lipid profiling by mass spectrometry imaging. Endokrynol Pol. 2018;69(1):2–8.

    Article  PubMed  Google Scholar 

  53. Wang TT, Cheng XL, Xu HX, Meng YF, Yin ZB, Li XP, Wei H. Perspective on advances in laser-based high-resolution mass spectrometry imaging. Anal Chem. 2020;92(1):543–53.

    Article  CAS  PubMed  Google Scholar 

  54. Meng YF, Cheng XL, Wang TT, Hang W, Li XP, Nie W, Liu R, Lin Z, Hang L, Yin ZB, Zhang BL, Yan XM. Micro-lensed fiber laser desorption mass spectrometry imaging reveals subcellular distribution of drugs within single cells. Angewandte Chemie-Int Ed. 2020;59(41):17864–71.

    Article  CAS  Google Scholar 

  55. Unsihuay D, Mesa Sanchez D, Laskin J. Quantitative mass spectrometry imaging of biological systems. Annu Rev Phys Chem. 2021;72:307–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao C, Xie PS, Yong T, Huang W, Liu J, Wu DS, Ji FF, Li M, Zhang DD, Li RJ, Dong C, Ma J, Dong Z, Liu SJ, Cai ZW. Airborne fine particulate matter induces cognitive and emotional disorders in offspring mice exposed during pregnancy. Sci Bull. 2021;66:578–91.

    Article  CAS  Google Scholar 

  57. Clench MR. Advances in mass spectrometry imaging. Proteomics. 2016;16(11–12):1605–6.

    Article  CAS  PubMed  Google Scholar 

  58. Vaysse PM, Heeren RMA, Porta T, Balluff B. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst. 2017;142(15):2690–712.

    Article  CAS  PubMed  Google Scholar 

  59. Mosele N, Smith A, Galli M, Pagni F, Magni F. Methods Mol Biol. 2017; 1618: 37–47

  60. Santoro AL, Drummond RD, Silva IT, Ferreira SS, Juliano L, Vendramini PH, Lemos MBC, Eberlin MN, Andrade VP. In situ DESI-MSI lipidomic profiles of breast cancer molecular subtypes and precursor lesions. Cancer Res. 2020;80(6):1246–57.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang JL, Yu WD, Ryu SW, Lin J, Buentello G, Tibshirani R, Suliburk J, Eberlin LS. Cardiolipins are biomarkers of mitochondria-rich thyroid oncocytic tumors. Cancer Res. 2016;76:6588–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pang X, Song X, He G, Zhang J, Sun CL, Huang LJ, Li C, Zang QG, Li X, Luo ZG, Zhang RP, Xie P, Liu XY, Li Y, Chen XG, Abliz Z. Virtual Calibration quantitative mass spectrometry imaging for accurately mapping analytes across heterogenous biotissue. Anal Chem. 2019;91(4):2838–46.

    Article  PubMed  CAS  Google Scholar 

  63. Huang L, Mao X, Sun C, Luo ZG, Song XW, Li X, Zhang RP, Lv YW, Chen J, He JM, Abliz Z. A graphical data processing pipeline for mass spectrometry imaging-based spatially resolved metabolomics on tumor heterogeneity. Anal Chim Acta. 2019;10(24):183–90.

    Article  CAS  Google Scholar 

  64. Luo Z, Liu D, Pang X, Yang W, He JM, Zhang RP, Zhu CG, Chen YH, Li X, Zhang JJ, Shi JG, Abliz Z. Whole-body spatially-resolved metabolomics method for profiling the metabolic differences of epimer drug candidates using ambient massspectrometry imaging. Talanta. 2019;202:198–206.

    Article  CAS  PubMed  Google Scholar 

  65. Song XW, He JM, Pang XC, Zhang J, Sun CL, Huang LJ, Li C, Zang QC, Li X, Luo ZG, Zhang RP, Xie P, Liu XY, Li Y, Chen XG, Abliz Z. Virtual calibration quantitative mass spectrometry imaging for accurately mapping analytes across heterogenous biotissue. Anal chem. 2019;91:2838–46.

    Article  CAS  PubMed  Google Scholar 

  66. Banerjee S, Zare RN, Tibshirani RJ, Kunder CA, Nolley R, Fan R, Brooks JD, Sonn GA. Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids. Proc Natl Acad Sci USA. 2017;114(13):3334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leeat K, Marc B, Diana M, Angoshtari R, Jain S, Varma S, Yang SR, Kurian A, Valen DV, West R, Bendall SC, Angelo M. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174(6):1373–87.

    Article  CAS  Google Scholar 

  68. Tingting F, Nicolas E, Alain B. Radial distribution of wood extractives in European larch Larix decidua by TOF-SIMS imaging. Phyto Chem. 2018;150:31–9.

    Google Scholar 

  69. Sjövall P, Agnarsson B, Carlred L, Gunnarsson A, Höök F. Liposome binding for multiplexed biomolecule detection and imaging using ToF-SIMS. Surf Interface Anal. 2014;46(10–11):707–11.

    Article  CAS  Google Scholar 

  70. Evans-Nguyen K, Stelmack AR, Clowser PC, Holtz JM, Mulligan CC. Fieldable mass spectrometry for forensic science, homeland security, and defense applications. Mass Spectrom Rev. 2021;40(5):628–46.

    Article  PubMed  Google Scholar 

  71. Zhao C, Cai ZW. Three-dimensional quantitative mass spectrometry imaging in complex system: from subcellular to whole organism. Mass Spectrom Rev. 2020. https://doi.org/10.1002/mas.21674.

    Article  PubMed  Google Scholar 

  72. Abooshahab R, Hooshmand K, Razavi SA, Gholami M, Sanoie M, Hedayati M. Plasma metabolic profiling of human thyroid nodules by gas chromatography-mass spectrometry (GC-MS)-based untargeted metabolomics. Front Cell Dev Biol. 2020;8:385.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shang X, Zhong X, Tian X. Metabolomics of papillary thyroid carcinoma tissues: potential biomarkers for diagnosis and promising targets for therapy. Tumor Biol. 2016;37(8):11163–75.

    Article  CAS  Google Scholar 

  74. Du Y, Fan P, Zou L, Jiang Y, Gu XW, Yu J, Zhang CJ. Serum metabolomics study of papillary thyroid carcinoma based on HPLC-Q-TOF-MS/MS. Front Cell Dev Biol. 2021;9:593510.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cheung CHY, Juan HF. Quantitative proteomics in lung cancer. J Biomed Sci. 2017;24(1):37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yekta RF, Oskouie AA, Tavirani MR, Tehrani MRM, Soroush AR. Decreased apolipoprotein A4 and increased complement component 3 as potential markers for papillary thyroid carcinoma: a proteomic study. Int J Biol Markers. 2018;33(4):455–62.

    Article  CAS  Google Scholar 

  77. Ferrari E, Wittig A, Basilico F, Rossi R, Palma AD, Silvestre DD, Sauerwein W, Mauri P. Urinary proteomics profiles are useful for detection of cancer biomarkers and changes induced by therapeutic procedures. Molecules. 2019;24(4):794.

    Article  PubMed Central  CAS  Google Scholar 

  78. Dai J, Yu X, Han Y, Chai L, Liao Y, Zhong P, Xie R, Sun XC, Huang QQ, Wang J, Yin ZQ, Zhang Y, Lv ZW, Jia CY. TMT-labeling proteomics of papillary thyroid carcinoma reveal invasive biomarkers. J Cancer. 2020;11(20):6122–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Natural Science Foundation of Guangdong Province, China (2021A1515010171), Natural Science Foundation of Shanxi Province of China (201901D111210), 2019 Platform Base Special Project of Shanxi Province (201905D121002), Shanxi Medical University Innovation and Entrepreneurship Fund for College Students (2020181). Shenzhen Science and Technology Innovation Commission (KCXFZ202002011008124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bian.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HJ., Li, B., Zhang, MT. et al. Mass Spectrometry and Mass Spectrometry Imaging-based Thyroid Cancer Analysis. J. Anal. Test. 6, 235–246 (2022). https://doi.org/10.1007/s41664-022-00218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-022-00218-y

Keywords

Navigation