Skip to main content

Advertisement

Log in

Advances in metabolomics of thyroid cancer diagnosis and metabolic regulation

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Thyroid cancers (TCs) are the most frequent endocrine malignancy with an unpredictable fast-growing incidence, especially in females all over the world. Fine-needle aspiration biopsy (FNAB) analysis is an accurate diagnostic method for detecting thyroid nodules and classification of TC. Though simplicity, safety, and accuracy of FNAB, 15–30% of cases are indeterminate, and it is not possible to determine the exact cytology of the specimen. This demands the need for innovative methods capable to find crucial biomarkers with adequate sensitivity for diagnosis and prediction in TC researches. Cancer-based metabolomics is a vast emerging field focused on the detection of a large set of metabolites extracted from biofluids or tissues. Using analytical chemistry procedures allows for the potential recognition of cancer-based metabolites for the purposes of advancing the era of personalized medicine. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) coupled with separation techniques e.g., gas chromatography (GC) and liquid chromatography (LC) are the main approaches for metabolic studies in cancers. The immense metabolite profiling has provided a chance to discover novel biomarkers for early detection of thyroid cancer and reduce unnecessary aggressive surgery. In this review, we recapitulate the recent advances and developed methods of diverse metabolomics tools and metabolic phenotypes of thyroid cancer, following a brief discussion of recent challenges in the thyroid cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Vaccarella, S. Franceschi, F. Bray, C.P. Wild, M. Plummer, L. Dal Maso, Worldwide thyroid-cancer epidemic? the increasing impact of overdiagnosis. N. Engl. J. Med. 375, 614 (2016)

    Article  PubMed  Google Scholar 

  2. L.Z.K. Enewold, E. Ron, A.J. Marrogi, A. Stojadinovic, G.E. Peoples, S.S. Devesa, Rising thyroid cancer incidence in the United States by demographic and tumor characteristics. Cancer Epidemiol. Biomarkers. Prev. 18, 784–779 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  3. L.G. Morris, D. Myssiorek, Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: a population-based analysis. Am. J. Surg. 200, 454–461; https://doi.org/10.1016/j.amjsurg.2009.11.008 (2010)

  4. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 68, 394–424 (2018)

    Google Scholar 

  5. G.D. Braunstein, Thyroid Cnacer. In: Melmed, editor. Endocrine Updates. Vol. 32 (Springer, NY, USA, 2012)

  6. N.R.M.E. Lemoine, F.S. Wyllie, C.J. Farr, D. Hughes, R.A. Padua et al., Activated ras oncogenes in human thyroid cancers. Cancer Res. 48, 4459–4463 (1998)

    Google Scholar 

  7. D. Sarne, SA, External radiation and thyroid neoplasia. Endocrinol. Metab. Clin. North. Am. 25, 181–195 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. H.N.I. Yamashita, S. Noguchi, N. Murakami, A. Moriuchi, S. Yokoyama et al., Thyroid carcinoma in benign thyroid diseases:an analysis from minute carcinoma. Acta Pathol. Jpn. 35, 781–788 (1985)

    CAS  PubMed  Google Scholar 

  9. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer CD, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Steward, R.M. Tuttle, Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 19, 1167–1214 (2009)

    Article  Google Scholar 

  10. E.S.A.S. Cibas, The Bethesda system for reporting thyroid cytopathology. Thyroid. 19, 1159–1165 (2009)

    Article  PubMed  Google Scholar 

  11. J. Yang, V. Schnadig, R. Logrono, P.G. Wasserman, Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer 25 111, 306–315 (2007)

    Article  Google Scholar 

  12. L. Yassa, E.S. Cibas, C.B. Benson, M.C. Frates, P.M. Doubilet, A.A. Gawande, F.D. Moore Jr, B.W. Kim, V. Nosé, E. Marqusee, Long‐term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer Cytopathol.: Interdisciplinary International Journal of the American Cancer Society 111, 508–516 (2007)

    Article  Google Scholar 

  13. F. Pacini, M. Schlumberger, H. Dralle, R. Elisei, J.W. Smit, W. Wiersinga, Erratum: European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur. J. Endocrinol. 155, 385 (2006)

    Article  CAS  Google Scholar 

  14. M. Bongiovanni, A. Spitale, W.C. Faquin, L. Mazzucchelli, Z.W. Baloch, The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 56, 333–339 (2012)

    Article  PubMed  Google Scholar 

  15. A.S. Ho, E.E. Sarti, K.S. Jain, H. Wang, I.J. Nixon, A.R. Shaha, J.P. Shah, D.H. Kraus, R. Ghossein, S.A. Fish, Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid. 24, 832–839 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  16. X. Su, X. Jiang, X. Xu, W. Wang, X. Teng, A. Shao, L. Teng, Diagnostic value of BRAFV600E-mutation analysis in fine-needle aspiration of thyroid nodules: a meta-analysis. Onco. Targets Ther. 9, 2495 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. W. Clinkscales, A. Ong, S. Nguyen, E.E. Harruff, M.B. Gillespie, Diagnostic value of RAS mutations in indeterminate thyroid nodules: systematic review and meta-analysis. Otolaryngology–Head and Neck Surgery 156, 472–479 (2017)

    Article  PubMed  Google Scholar 

  18. M. Eszlinger, A. Krogdahl, S. Münz, C. Rehfeld, E.M. Precht Jensen, C. Ferraz, E. Bösenberg, N. Drieschner, M. Scholz, L. Hegedüs, Impact of molecular screening for point mutations and rearrangements in routine air-dried fine-needle aspiration samples of thyroid nodules. Thyroid. 24, 305–313 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. S. Yu, Y. Liu, J. Wang, Z. Guo, Q. Zhang, F. Yu, Y. Zhang, K. Huang, Y. Li, E. Song, Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. The Journal of Clinical Endocrinology & Metabolism 97, 2084–2092 (2012)

    Article  CAS  Google Scholar 

  20. S. Fischer, S.L. Asa, Application of immunohistochemistry to thyroid neoplasms. Arch. Pathol. Lab. Med. 132, 359–372 (2008)

    PubMed  Google Scholar 

  21. S. Serra, S.L. Asa, Controversies in thyroid pathology: the diagnosis of follicular neoplasms. Endocr. Pathol. 19, 156–165 (2008)

    Article  PubMed  Google Scholar 

  22. J.K. Nicholson, J.C. Lindon, E. Holmes, ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181–1189 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. W.M. Claudino, P.H. Goncalves, A. di Leo, P.A. Philip, F.H. Sarkar, Metabolomics in cancer: a bench-to-bedside intersection. Crit. Rev. Oncol. Hematol. 84, 1–7 (2012)

    Article  PubMed  Google Scholar 

  24. A. Shevchenko, K. Simons, Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 11, 593 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. M.R. Wenk, The emerging field of lipidomics. Nat. Rev. Drug. Discov. 4, 594 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. R. Bandu, H.J. Mok, K.P. Kim, Phospholipids as cancer biomarkers: mass spectrometry‐based analysis. Mass. Spectrom. Rev. 37, 107–138 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. P. Miccoli, L. Torregrossa, L. Shintu, A. Magalhaes, J. Chandran, A. Tintaru, C. Ugolini, M.N. Minuto, M. Miccoli, F. Basolo, Metabolomics approach to thyroid nodules: A high-resolution magic-angle spinning nuclear magnetic resonance–based study. Surgery 152, 1118–1124 (2012)

    Article  PubMed  Google Scholar 

  28. A. Wojakowska, M. Chekan, P. Widlak, M. Pietrowska, Application of metabolomics in thyroid cancer research. Int. Jo. Endocrinol 2015, 258763 (2015)

    Google Scholar 

  29. R.H. Grogan, E.J. Mitmaker, O.H. Clark, The evolution of biomarkers in thyroid cancer—from mass screening to a personalized biosignature. Cancers 2, 885–912 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L. Guo, C. Wang, C. Chi, X. Wang, S. Liu, W. Zhao, C. Ke, G. Xu, E. Li, Exhaled breath volatile biomarker analysis for thyroid cancer. Translational Research 166, 188–195 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. X. Shang, X. Zhong, X. Tian, Metabolomics of papillary thyroid carcinoma tissues: potential biomarkers for diagnosis and promising targets for therapy. Tumor Biology 37, 11163–11175 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. M. Chen, M. Shen, Y. Li, C. Liu, K. Zhou, W. Hu, B. Xu, Y. Xia, W. Tang, GC-MS-based metabolomic analysis of human papillary thyroid carcinoma tissue. Int. J. Mol. Med. 36, 1607–1614 (2015)

    Article  PubMed  Google Scholar 

  33. G.N. Gowda, S. Zhang, H. Gu, V. Asiago, N. Shanaiah, D. Raftery, Metabolomics-based methods for early disease diagnostics. Expert. Rev. Mol. Diagn. 8, 617–633 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. A. Scalbert, L. Brennan, O. Fiehn, T. Hankemeier, B.S. Kristal, B. van Ommen, E. Pujos-Guillot, E. Verheij, D. Wishart, S. Wopereis, Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 5, 435 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Beger, A review of applications of metabolomics in cancer. Metabolites 3, 552–574 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. L. Brennan, NMR-based metabolomics: from sample preparation to applications in nutrition research. Prog. Nucl. Magn. Reson. Spectros. 83, 42–49 (2014)

    Article  CAS  Google Scholar 

  37. J.L. Griffin, R.A. Kauppinen, Tumour metabolomics in animal models of human cancer. J. Proteome. Res. 6, 498–505 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. I.C. Felli, B. Brutscher, Recent advances in solution NMR: fast methods and heteronuclear direct detection. Chemphyschem 10, 1356–1368 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. P. Russell, C.L. Lean, L. Delbridge, G.L. May, S. Dowd, C.E. Mountford, Proton magnetic resonance and human thyroid neoplasia I: discrimination between benign and malignant neoplasms. Am. J. Med. 96, 383–388 (1994)

    Article  CAS  PubMed  Google Scholar 

  40. W.B. Mackinnon, L. Delbridge, P. Russell, C.L. Lean, G.L. May, S. Doran, S. Dowd, C.E. Mountford, Two-dimensional proton magnetic resonance spectroscopy for tissue characterization of thyroid neoplasms. World J. Surg. 20, 841–847 (1996)

    Article  CAS  PubMed  Google Scholar 

  41. Y. Yoshioka, J. Sasaki, M. Yamamoto, K. Saitoh, S. Nakaya, M. Kubokawa, Quantitation by 1H‐NMR of dolichol, cholesterol and choline‐containing lipids in extracts of normal and phathological thyroid tissue. NMR. Biomed. 13, 377–383 (2000)

    Article  CAS  PubMed  Google Scholar 

  42. A.D. King, D.K. Yeung, A.T. Ahuja, M. Gary, A.B. Chan, S.S. Lam, A.C. van Hasselt, In vivo 1H MR spectroscopy of thyroid carcinoma. Eur. J. Radiol. 54, 112–117 (2005)

    Article  PubMed  Google Scholar 

  43. K.W. Jordan, C.B. Adkins, L.L. Cheng, W.C. Faquin, Application of magnetic-resonance-spectroscopy-based metabolomics to the fine-needle aspiration diagnosis of papillary thyroid carcinoma. Acta Cytol. 55, 584–589 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  44. L. Torregrossa, L. Shintu, J. Nambiath Chandran, A. Tintaru, C. Ugolini, Magalhães Ar, F. Basolo, P. Miccoli, S. Caldarelli, Toward the reliable diagnosis of indeterminate thyroid lesions: a HRMAS NMR-based metabolomics case of study. J. Proteome. Res. 11, 3317–3325 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. S. Deja, T. Dawiskiba, W. Balcerzak, M. Orczyk-Pawiłowicz, M. Głód, D. Pawełka, P. Młynarz, Follicular adenomas exhibit a unique metabolic profile. 1H NMR studies of thyroid lesions. PLoS ONE. 8, e84637 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Y. Tian, X. Nie, S. Xu, Y. Li, T. Huang, H. Tang, Y. Wang, Integrative metabonomics as potential method for diagnosis of thyroid malignancy. Sci. Rep. 5, 14869 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. I. Ryoo, H. Kwon, S.C. Kim, S.C. Jung, J.A. Yeom, H.S. Shin, H.R. Cho, T.J. Yun, S.H. Choi, C.-H. Sohn, Metabolomic analysis of percutaneous fine-needle aspiration specimens of thyroid nodules: potential application for the preoperative diagnosis of thyroid cancer. Sci. Rep. 6, 30075 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. Lu, S. Hu, P. Miccoli, Q. Zeng, S. Liu, L. Ran, C. Hu, Non-invasive diagnosis of papillary thyroid microcarcinoma: a NMR-based metabolomics approach. Oncotarget 7, 81768 (2016)

    PubMed  PubMed Central  Google Scholar 

  49. W. Wojtowicz, A. Zabek, S. Deja, T. Dawiskiba, D. Pawelka, M. Glod, W. Balcerzak, P. Mlynarz, Serum and urine 1 H NMR-based metabolomics in the diagnosis of selected thyroid diseases. Sci. Rep. 7, 9108 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J.W. Seo, K. Han, J. Lee, E.-K. Kim, H.J. Moon, J.H. Yoon, V.Y. Park, H.-M. Baek, J.Y. Kwak, Application of metabolomics in prediction of lymph node metastasis in papillary thyroid carcinoma. PLoS ONE. 13, e0193883 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Y. Gu, T. Chen, S. Fu, X. Sun, L. Wang, J. Wang, Y. Lu, S. Ding, G. Ruan, L. Teng, Perioperative dynamics and significance of amino acid profiles in patients with cancer. J. Transl. Med. 13, 35 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Z. Yao, P. Yin, D. Su, Z. Peng, L. Zhou, L. Ma, W. Guo, L. Ma, G. Xu, J. Shi, Serum metabolic profiling and features of papillary thyroid carcinoma and nodular goiter. Mol. Biosyst. 7, 2608–2614 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. A. Wojakowska, M. Chekan, Ł. Marczak, K. Polanski, D. Lange, M. Pietrowska, P. Widlak, Detection of metabolites discriminating subtypes of thyroid cancer: molecular profiling of FFPE samples using the GC/MS approach. Mol. Cell. Endocrinol. 417, 149–157 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. Y. Xu, X. Zheng, Y. Qiu, W. Jia, J. Wang, S. Yin, Distinct metabolomic profiles of papillary thyroid carcinoma and benign thyroid adenoma. J. Proteome. Res. 14, 3315–3321 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. S. Shimma, Y. Sugiura, T. Hayasaka, N. Zaima, M. Matsumoto, M. Setou, Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal. Chem. 80, 878–885 (2008)

    Article  CAS  PubMed  Google Scholar 

  56. S. Ishikawa, I. Tateya, T. Hayasaka, N. Masaki, Y. Takizawa, S. Ohno, T. Kojima, Y. Kitani, M. Kitamura, S. Hirano, Increased expression of phosphatidylcholine (16: 0/18: 1) and (16: 0/18: 2) in thyroid papillary cancer. PLoS ONE. 7, e48873 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S. Guo, Y. Wang, D. Zhou, Z. Li, Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci. Rep. 4, 5959 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Guo, L. Qiu, Y. Wang, X. Qin, H. Liu, M. He, Y. Zhang, Z. Li, X. Chen, Tissue imaging and serum lipidomic profiling for screening potential biomarkers of thyroid tumors by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 406, 4357–4370 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. A. Wojakowska, L. Cole, M. Chekan, K. Bednarczyk, M. Maksymiak, M. Oczko-Wojciechowska, B. Jarzab, M. Clench, J. Polańska, M. Pietrowska, Discrimination of papillary thyroid cancer from non-cancerous thyroid tissue based on lipid profiling by MALDI-MSI. Endokrynologia Polska 69, 2–8 (2015)

    Article  Google Scholar 

  60. O. Warburg, S. Minami, Versuche an überlebendem carcinom-gewebe. J. Mol. Med. 2, 776–777 (1923)

    Google Scholar 

  61. S. Weinhouse, O. Warburg, D. Burk, A.L.Schade, On Respiratory Impairment in Cancer Cells. Science 124, 267–272 (1956). https://doi.org/10.1126/science.124.3215.267

  62. D.C. Ngo, K. Ververis, S.M. Tortorella, T.C. Karagiannis, Introduction to the molecular basis of cancer metabolism and the Warburg effect. Mol. Biol. Rep. 42, 819–823 (2015)

    Article  CAS  PubMed  Google Scholar 

  63. R.J. DeBerardinis, J.J. Lum, G. Hatzivassiliou, C.B. Thompson, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell. Metab. 7, 11–20 (2008)

    Article  CAS  PubMed  Google Scholar 

  64. Y. Asgari, Z. Zabihinpour, A. Salehzadeh-Yazdi, F. Schreiber, A. Masoudi-Nejad, Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation. Genomics 105, 275–281 (2015)

    Article  CAS  PubMed  Google Scholar 

  65. R.G. Coelho, Jd.M. Cazarin, C. de Albuquerque, J.P. Albuquerque, B.M. de Andrade, D.P. Carvalho, Differential glycolytic profile and Warburg effect in papillary thyroid carcinoma cell lines. Oncol. Rep. 36, 3673–3681 (2016)

    Article  CAS  PubMed  Google Scholar 

  66. S.S. Sabharwal, P.T. Schumacker, Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. U. Weyemi, B. Caillou, M. Talbot, R. Ameziane-El-Hassani, L. Lacroix, O. Lagent-Chevallier, A. Al Ghuzlan, D. Roos, J.-M. Bidart, A. Virion, Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr. Relat. Cancer 17, 27–37 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. U. Weyemi, O. Lagente-Chevallier, M. Boufraqech, F. Prenois, F. Courtin, B. Caillou, M. Talbot, M. Dardalhon, A. Al Ghuzlan, J. Bidart, ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31, 1117 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. N. Azouzi, J. Cailloux, J.M. Cazarin, J.A. Knauf, J. Cracchiolo, A. Al Ghuzlan, D. Hartl, M. Polak, A. Carré, M. El Mzibri, NADPH oxidase NOX4 is a critical mediator of BRAFV600E-induced downregulation of the sodium/iodide symporter in papillary thyroid carcinomas. Antioxid. Redox. Signal. 26, 864–877 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. I. Moroni, L. D’incerti, E. Maccagnano, M. Bugiani, M. Rimoldi, G. Broggi, G. Uziel, L-2-hydroxyglutaric aciduria and brain malignant tumors. J. Inherit. Metab. Dis. 25, 59 (2002)

    Google Scholar 

  71. A.M. Intlekofer, R.G. Dematteo, S. Venneti, L.W. Finley, C. Lu, A.R. Judkins, A.S. Rustenburg, P.B. Grinaway, J.D. Chodera, J.R. Cross, Hypoxia induces production of L-2-hydroxyglutarate. Cell. Metab. 22, 304–311 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. F.E. Bleeker, S. Lamba, S. Leenstra, D. Troost, T. Hulsebos, W.P. Vandertop, M. Frattini, F. Molinari, M. Knowles, A. Cerrato, IDH1 mutations at residue p. R132 (IDH1R132) occur frequently in high‐grade gliomas but not in other solid tumors. Hum. Mutat. 30, 7–11 (2009)

    Article  CAS  PubMed  Google Scholar 

  73. A.K. Murugan, E. Bojdani, M. Xing, Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem. Biophys. Res. Commun. 393, 555–559 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. R.S. Haber, K.R. Weiser, A. Pritsker, I. Reder, D.E. Burstein, GLUT1 glucose transporter expression in benign and malignant thyroid nodules. Thyroid. 7, 363–367 (1997)

    Article  CAS  PubMed  Google Scholar 

  75. K. Matsuzu, F. Segade, U. Matsuzu, A. Carter, D.W. Bowden, N.D. Perrier, Differential expression of glucose transporters in normal and pathologic thyroid tissue. Thyroid. 14, 806–812 (2004)

    Article  CAS  PubMed  Google Scholar 

  76. J.H. Nahm, H.M. Kim, J.S. Koo, Glycolysis-related protein expression in thyroid cancer. Tumor Biology 39, 1010428317695922 (2017)

    Article  PubMed  Google Scholar 

  77. J.E. Wilson, Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 206, 2049–2057 (2003)

    Article  CAS  PubMed  Google Scholar 

  78. Paweł. Lis, Mariusz Dyl ag, Katarzyna Nied´zwiecka, YoungH. Ko, PeterL. Pedersen AG, S. Ułaszewski, The HK2 dependent “Warburg Effect” and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Molecules 21, 1730 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  79. G. Rijksen, R. Oskam, C.F. Molthoff, S.-J.L. On, M. Streefkerk, G.E. Staal, Hexokinase isoenzymes from anaplastic and differentiated medullary thyroid carcinoma in the rat. Eur. J. Cancer 20, 967–973 (1984)

    Article  CAS  Google Scholar 

  80. L. Hooft, A. Van der Veldt, P. Van Diest, O. Hoekstra, J. Berkhof, G. Teule, C. Molthoff, [18F] fluorodeoxyglucose uptake in recurrent thyroid cancer is related to hexokinase I expression in the primary tumor. J. Clin. Endocrinol. Metab. 90, 328–334 (2005)

    Article  CAS  PubMed  Google Scholar 

  81. L. Hooft, A. Van Der Veldt, O. Hoekstra, M. Boers, C. Molthoff, P. Van Diest, Hexokinase III, cyclin A and galectin‐3 are overexpressed in malignant follicular thyroid nodules. Clin. Endocrinol. (Oxf). 68, 252–257 (2008)

    Article  CAS  PubMed  Google Scholar 

  82. K. Imamura, T. TANAKA, Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. J. Biochem. 71, 1043–1051 (1972)

    Article  CAS  PubMed  Google Scholar 

  83. H.R. Christofk, M.G. Vander Heiden, M.H. Harris, A. Ramanathan, R.E. Gerszten, R. Wei, M.D. Fleming, S.L. Schreiber, L.C. Cantley, The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230 (2008)

    Article  CAS  PubMed  Google Scholar 

  84. M.I. Koukourakis, A. Giatromanolaki, E. Sivridis, Lactate dehydrogenase isoenzymes 1 and 5: differential expression by neoplastic and stromal cells in non-small cell lung cancer and other epithelial malignant tumors. Tumor Biol. 24, 199–202 (2003)

    Article  CAS  Google Scholar 

  85. C. Feng, Y. Gao, C. Wang, X. Yu, W. Zhang, H. Guan, Z. Shan, W. Teng, Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 98, E1524–E1533 (2013)

    Article  CAS  PubMed  Google Scholar 

  86. V.R. Fantin, J. St-Pierre, P. Leder, Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 9, 425–434 (2006)

    Article  CAS  PubMed  Google Scholar 

  87. D. Mirebeau-Prunier, S. Le Pennec, C. Jacques, J.-F. Fontaine, N. Gueguen, N. Boutet-Bouzamondo, A. Donnart, Y. Malthièry, F. Savagner, Estrogen-related receptor alpha modulates lactate dehydrogenase activity in thyroid tumors. PLoS ONE. 8, e58683 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. P. Kachel, B. Trojanowicz, C. Sekulla, H. Prenzel, H. Dralle, C. Hoang-Vu, Phosphorylation of pyruvate kinase M2 and lactate dehydrogenase A by fibroblast growth factor receptor 1 in benign and malignant thyroid tissue. BMC. Cancer 15, 140 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. A.P. Halestrap, The SLC16 gene family–structure, role and regulation in health and disease. Mol. Aspects. Med. 34, 337–349 (2013)

    Article  CAS  PubMed  Google Scholar 

  90. A.P. Halestrap, M.C. Wilson, The monocarboxylate transporter family—role and regulation. IUBMB Life 64, 109–119 (2012)

    Article  CAS  PubMed  Google Scholar 

  91. C. Pinheiro, A. Longatto-Filho, J. Azevedo-Silva, M. Casal, F.C. Schmitt, F. Baltazar, Role of monocarboxylate transporters in human cancers: state of the art. J. Bioenerg. Biomembr. 44, 127–139 (2012)

    Article  CAS  PubMed  Google Scholar 

  92. J.M. Johnson, S.Y. Lai, P. Cotzia, D. Cognetti, A. Luginbuhl, E.A. Pribitkin, T. Zhan, M. Mollaee, M. Domingo-Vidal, Y. Chen, Mitochondrial Metabolism as a Treatment Target in Anaplastic Thyroid Cancer. Semin Oncol. 42, 915–922 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. J.M. Curry, P. Tassone, P. Cotzia, J. Sprandio, A. Luginbuhl, D.M. Cognetti, M. Mollaee, M. Domingo‐Vidal, E.A. Pribitkin, W.M. Keane, Multicompartment metabolism in papillary thyroid cancer. Laryngoscope 126, 2410–2418 (2016)

    Article  CAS  PubMed  Google Scholar 

  94. R.J. DeBerardinis, T. Cheng, Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313 (2010)

    Article  CAS  PubMed  Google Scholar 

  95. C.L. Collins, M. Wasa, W.W. Souba, S.F. Abcouwer, Regulation of glutamine synthetase in human breast carcinoma cells and experimental tumors. Surgery 122, 451–464 (1997)

    Article  CAS  PubMed  Google Scholar 

  96. E. Friday, R. Oliver, T. Welbourne, F. Turturro, Glutaminolysis and glycolysis regulation by troglitazone in breast cancer cells: Relationship to mitochondrial membrane potential. J. Cell. Physiol. 226, 511–519 (2011)

    Article  CAS  PubMed  Google Scholar 

  97. H.M. Kim, Y.K. Lee, J.S. Koo, Expression of glutamine metabolism-related proteins in thyroid cancer. Oncotarget 7, 53628 (2016)

    PubMed  PubMed Central  Google Scholar 

  98. Y. Yu, X. Yu, C. Fan, H. Wang, R. Wang, C. Feng, H. Guan, Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J. Mol. Med. 96, 777–790 (2018)

    Article  CAS  PubMed  Google Scholar 

  99. J.-w Kim, P. Gao, Y.-C. Liu, G.L. Semenza, C.V. Dang, Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. H. Shim, C. Dolde, B.C. Lewis, C.-S. Wu, G. Dang, R.A. Jungmann, R. Dalla-Favera, C.V. Dang, c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. 94, 6658–6663 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Y. Qu, Q. Yang, J. Liu, B. Shi, M. Ji, G. Li, P. Hou, c-Myc is required for BRAFV600E-induced epigenetic silencing by H3K27me3 in tumorigenesis. Theranostics 7, 2092 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. J.-w Kim, I. Tchernyshyov, G.L. Semenza, C.V. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006)

    Article  CAS  PubMed  Google Scholar 

  103. J. Pouysségur, F. Dayan, N.M. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437 (2006)

    Article  CAS  PubMed  Google Scholar 

  104. C.V. Dang, Kim J-w, P. Gao, J. Yustein, The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 8, 51 (2008)

    Article  CAS  PubMed  Google Scholar 

  105. J.D. Gordan, C.B. Thompson, M.C. Simon, HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 12, 108–113 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. O. Koperek, E. Akin, R. Asari, B. Niederle, N. Neuhold, Expression of hypoxia-inducible factor 1 alpha in papillary thyroid carcinoma is associated with desmoplastic stromal reaction and lymph node metastasis. Virchows. Arch. 463, 795–802 (2013)

    Article  CAS  PubMed  Google Scholar 

  107. A. Klaus, O. Fathi, T.-W. Tatjana, N. Bruno, K. Oskar, Expression of hypoxia-associated protein HIF-1α in follicular thyroid cancer is associated with distant metastasis. Pathol. Oncol. Res. 24, 289–296 (2018)

    Article  CAS  PubMed  Google Scholar 

  108. L. Lodewijk, P. van Diest, P. van der Groep, N. ter Hoeve, A. Schepers, J. Morreau, J. Bonenkamp, A. van Engen-van Grunsven, S. Kruijff, B. van Hemel, Expression of HIF-1α in medullary thyroid cancer identifies a subgroup with poor prognosis. Oncotarget 8, 28650 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  109. Y. Lv, Y. Sun, T. Shi, C. Shi, H. Qin, Z. Li, Pigment epithelium-derived factor has a role in the progression of papillary thyroid carcinoma by affecting the HIF1α-VEGF signaling pathway. Oncol. Lett. 12, 5217–5222 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. İ. Bingül, P. Vural, S. Doğru‐Abbasoğlu, E. Çil, M. Uysal, Vascular endothelial growth factor G + 405C polymorphism may contribute to the risk of developing papillary thyroid carcinoma. J. Clin. Lab. Anal. 31, e22110 (2017)

    Article  CAS  Google Scholar 

  111. O. Baris, Fdr Savagner, Vr Nasser, Ba Loriod, S. Granjeaud, S. Guyetant, B. Franc, P. Rodien, V. Rohmer, Fo Bertucci, Transcriptional profiling reveals coordinated up-regulation of oxidative metabolism genes in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab. 89, 994–1005 (2004)

    Article  CAS  PubMed  Google Scholar 

  112. E. Currie, A. Schulze, R. Zechner, T.C. Walther, R.V. Farese Jr, Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. C.R. Santos, A. Schulze, Lipid metabolism in cancer. FEBS. J. 279, 2610–2623 (2012)

    Article  CAS  PubMed  Google Scholar 

  114. C.A. Von Roemeling, L.A. Marlow, A.B. Pinkerton, A. Crist, J. Miller, H.W. Tun, R.C. Smallridge, J.A. Copland, Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target. J. Clin. Endocrinol. Metab. 100, E697–E709 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by a research grant from Endocrine Research Center, Shahid Beheshti University of Medical Sciences. The authors are grateful to Dr. S. Adeleh Razavi, Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, for critically reading the manuscript. The authors also would like to thank a graphic designer, Alireza Gerami, for his kind cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hedayati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abooshahab, R., Gholami, M., Sanoie, M. et al. Advances in metabolomics of thyroid cancer diagnosis and metabolic regulation. Endocrine 65, 1–14 (2019). https://doi.org/10.1007/s12020-019-01904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01904-1

Keywords

Navigation