Skip to main content
Log in

Quasi-two-dimensional turbulence

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Many fluid-dynamical systems met in nature are quasi-two-dimensional: they are constrained to evolve in approximately two dimensions with little or no variation along the third direction. This has a drastic effect in the flow evolution because the properties of three-dimensional turbulence are fundamentally different from those of two-dimensional turbulence. In three dimensions, energy is transferred on average towards small scales, while in two dimensions, energy is transferred towards large scales. Quasi-two-dimensional flows thus stand in a crossroad, with two-dimensional motions attempting to self-organize and generate large scales while three-dimensional perturbations cause disorder, disrupting any large-scale organization. Where is energy transferred in such systems? It has been realized recently that in fact the two behaviors can coexist with a simultaneous transfer of energy both to large and to small scales. How the cascade properties change as the variations along the third direction are suppressed has led to discovery of different regimes or phases of turbulence of unexpected richness in behavior. Here, recent discoveries on such systems are reviewed. It is described how the transition from three-dimensional to two-dimensional flows takes place, the different phases of turbulence met and the nature of the transitions from one phase to the other. Finally, the implications these new discoveries have on different physical systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data were presented in this article.

References

  • M. Abobaker, W. Liu, T. Aladjidi et al., Inverse energy cascade in two-dimensional quantum turbulence in a fluid of light. arXiv preprint arXiv:2211.08441 (2022)

  • A. Adriani, A. Mura, G. Orton et al., Clusters of cyclones encircling Jupiter’s poles. Nature 555(7695), 216–219 (2018)

    ADS  Google Scholar 

  • A. Aharon-Steinberg, T. Völkl, A. Kaplan et al., Direct observation of vortices in an electron fluid. arXiv preprint arXiv:2202.02798 (2022)

  • A. Alexakis, Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field. Phys. Rev. E 84(5), 056330 (2011)

    ADS  MathSciNet  Google Scholar 

  • A. Alexakis, Rotating Taylor–Green flow. J. Fluid Mech. 769, 46–78 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows. Phys. Rep. 767, 1–101 (2018)

    ADS  MathSciNet  Google Scholar 

  • A. Alexakis, M.E. Brachet, On the thermal equilibrium state of large-scale flows. J. Fluid Mech. 872, 594–625 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • A. Alexakis, F. Pétrélis, S.J. Benavides et al., Symmetry breaking in a turbulent environment. Phys. Rev. Fluids 6(2), 024605 (2021)

    ADS  Google Scholar 

  • H. Aref, D.L. Vainchtein, Point vortices exhibit asymmetric equilibria. Nature 392(6678), 769–770 (1998)

    ADS  Google Scholar 

  • D.A. Bandurin, A.V. Shytov, L.S. Levitov et al., Fluidity onset in graphene. Nat. Commun. 9(1), 1–8 (2018)

    Google Scholar 

  • P. Bartello, Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52(24), 4410–4428 (1995)

    ADS  MathSciNet  Google Scholar 

  • G.K. Batchelor, Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12(12), II–233 (1969)

    MATH  Google Scholar 

  • S.J. Benavides, A. Alexakis, Critical transitions in thin layer turbulence. J. Fluid Mech. 822, 364–385 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • G. Boffetta, S. Musacchio, Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82(1), 016307 (2010)

    ADS  Google Scholar 

  • G. Boffetta, A. Celani, M. Vergassola, Inverse energy cascade in two-dimensional turbulence: deviations from gaussian behavior. Phys. Rev. E 61(1), R29 (2000)

    ADS  Google Scholar 

  • G. Boffetta, F. De Lillo, S. Musacchio, Shell model for quasi-two-dimensional turbulence. Phys. Rev. E 83(6), 066302 (2011)

    ADS  Google Scholar 

  • G. Boffetta, R.E. Ecke et al., Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44(1), 427–451 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • F. Bouchet, A. Venaille, Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515(5), 227–295 (2012)

    ADS  MathSciNet  Google Scholar 

  • M. Brunet, B. Gallet, P.P. Cortet, Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability. Phys. Rev. Lett. 124(12), 124501 (2020)

    ADS  Google Scholar 

  • D. Byrne, J.A. Zhang, Height-dependent transition from 3-d to 2-d turbulence in the hurricane boundary layer. Geophys. Res. Lett. 40(7), 1439–1442 (2013)

    ADS  Google Scholar 

  • D. Byrne, H. Xia, M. Shats, Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid. Phys. Fluids 23(9), 095109 (2011)

    ADS  Google Scholar 

  • A. Campagne, B. Gallet, F. Moisy et al., Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids 26(12), 125112 (2014)

    ADS  Google Scholar 

  • A. Celani, S. Musacchio, D. Vincenzi, Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104(18), 184506 (2010)

    ADS  Google Scholar 

  • V. Dallas, S. Fauve, A. Alexakis, Statistical equilibria of large scales in dissipative hydrodynamic turbulence. Phys. Rev. Lett. 115(20), 204501 (2015)

    ADS  Google Scholar 

  • S.D. Danilov, D. Gurarie, Quasi-two-dimensional turbulence. Phys. Usp. 43(9), 863 (2000)

    ADS  Google Scholar 

  • P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2015)

    MATH  Google Scholar 

  • P.A. Davidson, Y. Kaneda, K. Moffatt et al., A Voyage Through Turbulence (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  • X.M. de Wit, A.J.A. Guzmán, H.J. Clercx et al., Discontinuous transitions towards vortex condensates in buoyancy-driven rotating turbulence. J. Fluid Mech. 936, A43 (2022a)

    MathSciNet  MATH  Google Scholar 

  • X.M. De Wit, A. Van Kan, A. Alexakis, Bistability of the large-scale dynamics in quasi-two-dimensional turbulence. J. Fluid Mech. 939, R2 (2022b). https://doi.org/10.1017/jfm.2022.209

    Article  ADS  MathSciNet  Google Scholar 

  • E. Deusebio, G. Boffetta, E. Lindborg et al., Dimensional transition in rotating turbulence. Phys. Rev. E 90(2), 023005 (2014)

    ADS  Google Scholar 

  • P.C. Di Leoni, A. Alexakis, L. Biferale et al., Phase transitions and flux-loop metastable states in rotating turbulence. Phys. Rev. Fluids 5(10), 104603 (2020)

    ADS  Google Scholar 

  • G. Falkovich, Inverse cascade and wave condensate in mesoscale atmospheric turbulence. Phys. Rev. Lett. 69, 3173–3176 (1992)

    ADS  Google Scholar 

  • B. Favier, F.S. Godeferd, C. Cambon et al., Quasi-static magnetohydrodynamic turbulence at high Reynolds number. J. Fluid Mech. 681, 434–461 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  • B. Favier, L.J. Silvers, M.R. Proctor, Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26(9), 096605 (2014)

    ADS  MATH  Google Scholar 

  • B. Favier, C. Guervilly, E. Knobloch, Subcritical turbulent condensate in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 864, R1 (2019)

    ADS  MATH  Google Scholar 

  • T.D. Ferreira, V. Rocha, D. Silva et al., Towards the experimental observation of turbulent regimes and the associated energy cascades with paraxial fluids of light. New J. Phys. 24(11), 113050 (2022)

    ADS  Google Scholar 

  • K. Fine, A. Cass, W. Flynn et al., Relaxation of 2d turbulence to vortex crystals. Phys. Rev. Lett. 75(18), 3277 (1995)

    ADS  Google Scholar 

  • N. Francois, H. Xia, H. Punzmann et al., Inverse energy cascade and emergence of large coherent vortices in turbulence driven by faraday waves. Phys. Rev. Lett. 110(19), 194501 (2013)

    ADS  Google Scholar 

  • U. Frisch, A.N. Kolmogorov, Turbulence: The Legacy of AN Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  • A. Frishman, C. Herbert, Turbulence statistics in a two-dimensional vortex condensate. Phys. Rev. Lett. 120(20), 204505 (2018)

    ADS  Google Scholar 

  • A. Fujisawa, A review of zonal flow experiments. Nucl. Fusion 49(1), 013001 (2008)

    ADS  Google Scholar 

  • B. Gallet, Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. J. Fluid Mech. 783, 412–447 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • B. Gallet, C.R. Doering, Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field. J. Fluid Mech. 773, 154–177 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • B. Gallet, J. Herault, C. Laroche et al., Reversals of a large-scale field generated over a turbulent background. Geophys. Astrophys. Fluid Dyn. 106(4–5), 468–492 (2012)

    ADS  Google Scholar 

  • B. Gallet, A. Campagne, P.P. Cortet et al., Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment. Phys. Fluids 26(3), 035108 (2014)

    ADS  Google Scholar 

  • G. Gauthier, M.T. Reeves, X. Yu et al., Giant vortex clusters in a two-dimensional quantum fluid. Science 364(6447), 1264–1267 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • W. Genovese, M.A. Munoz, J.M. Sancho, Nonequilibrium transitions induced by multiplicative noise. Phys. Rev. E 57(3), R2495 (1998)

    ADS  Google Scholar 

  • J.B. Gorce, E. Falcon, Statistical equilibrium of large scales in three-dimensional hydrodynamic turbulence. Phys. Rev. Lett. 129(5), 054501 (2022)

    ADS  Google Scholar 

  • C. Guervilly, D.W. Hughes, C.A. Jones, Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407–435 (2014)

    ADS  MathSciNet  Google Scholar 

  • C. Herbert, R. Marino, D. Rosenberg et al., Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J. Fluid Mech. 806, 165–204 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • S.P. Johnstone, A.J. Groszek, P.T. Starkey et al., Evolution of large-scale flow from turbulence in a two-dimensional superfluid. Science 364(6447), 1267–1271 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • M. Kardar, G. Parisi, Y.C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889 (1986)

    ADS  MATH  Google Scholar 

  • H. Kellay, W.I. Goldburg, Two-dimensional turbulence: a review of some recent experiments. Rep. Prog. Phys. 65(5), 845 (2002)

    ADS  Google Scholar 

  • D.H. Kelley, N.T. Ouellette, Spatiotemporal persistence of spectral fluxes in two-dimensional weak turbulence. Phys. Fluids 23(11), 115101 (2011)

    ADS  Google Scholar 

  • G.P. King, J. Vogelzang, A. Stoffelen, Upscale and downscale energy transfer over the tropical pacific revealed by scatterometer winds. J. Geophys. Res. Oceans 120(1), 346–361 (2015)

    ADS  Google Scholar 

  • A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301–305 (1941)

    MathSciNet  Google Scholar 

  • I. Kolvin, K. Cohen, Y. Vardi et al., Energy transfer by inertial waves during the buildup of turbulence in a rotating system. Phys. Rev. Lett. 102(1), 014503 (2009)

    ADS  Google Scholar 

  • R.H. Kraichnan, Inertial ranges in two-dimensional turbulence. Phys. Fluids 10(7), 1417–1423 (1967)

    ADS  Google Scholar 

  • R.H. Kraichnan, Inertial-range transfer in two-and three-dimensional turbulence. J. Fluid Mech. 47(3), 525–535 (1971)

    ADS  MATH  Google Scholar 

  • R.H. Kraichnan, Statistical dynamics of two-dimensional flow. J. Fluid Mech. 67(1), 155–175 (1975)

    ADS  MATH  Google Scholar 

  • H. Kurtuldu, J.S. Guasto, K.A. Johnson et al., Enhancement of biomixing by swimming algal cells in two-dimensional films. Proc. Natl. Acad. Sci. 108(26), 10391–10395 (2011)

    ADS  Google Scholar 

  • C. Lamriben, P.P. Cortet, F. Moisy, Direct measurements of anisotropic energy transfers in a rotating turbulence experiment. Phys. Rev. Lett. 107(2), 024503 (2011)

    ADS  Google Scholar 

  • J. Laurie, G. Boffetta, G. Falkovich et al., Universal profile of the vortex condensate in two-dimensional turbulence. Phys. Rev. Lett. 113(25), 254503 (2014)

    ADS  Google Scholar 

  • C.E. Leith, Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11(3), 671–672 (1968)

    ADS  Google Scholar 

  • D.K. Lilly, Numerical simulation of two-dimensional turbulence. Phys. Fluids 12(12), II–240 (1969)

    MATH  Google Scholar 

  • D.K. Lilly, Numerical simulation studies of two-dimensional turbulence: I. models of statistically steady turbulence. Geophys. Fluid Dyn. 3(4), 289–319 (1972)

    ADS  Google Scholar 

  • C.S. Lohani, S.K. Nayak, K. Seshasayanan, Effect of confinement on the transition from 2d to 3d fast rotating flows. arXiv preprint arXiv:2305.12255 (2023)

  • N. Machicoane, F. Moisy, P.P. Cortet, Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid. Phys. Rev. Fluids 1(7), 073701 (2016)

    ADS  Google Scholar 

  • S. Maffei, M.J. Krouss, K. Julien et al., On the inverse cascade and flow speed scaling behaviour in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 913, A18 (2021)

    MATH  Google Scholar 

  • R. Marino, P.D. Mininni, D. Rosenberg et al., Inverse cascades in rotating stratified turbulence: fast growth of large scales. EPL (Europhys. Lett.) 102(4), 44006 (2013)

    ADS  Google Scholar 

  • B. Martin, X. Wu, W. Goldburg et al., Spectra of decaying turbulence in a soap film. Phys. Rev. Lett. 80(18), 3964 (1998)

    ADS  Google Scholar 

  • E. Monsalve, M. Brunet, B. Gallet et al., Quantitative experimental observation of weak inertial-wave turbulence. Phys. Rev. Lett. 125(25), 254502 (2020)

    ADS  Google Scholar 

  • N.P. Müller, M.E. Brachet, A. Alexakis et al., Abrupt transition between three-dimensional and two-dimensional quantum turbulence. Phys. Rev. Lett. 124(13), 134501 (2020)

    ADS  Google Scholar 

  • S. Musacchio, G. Boffetta, Split energy cascade in turbulent thin fluid layers. Phys. Fluids 29(11), 111106 (2017)

    ADS  Google Scholar 

  • S. Musacchio, G. Boffetta, Condensate in quasi-two-dimensional turbulence. Phys. Rev. Fluids 4(2), 022602 (2019)

    ADS  Google Scholar 

  • B.N. Narozhny, Hydrodynamic approach to two-dimensional electron systems. La Rivista del Nuovo Cimento 45(10), 661–736 (2022). https://doi.org/10.1007/s40766-022-00036-z

    Article  ADS  Google Scholar 

  • A. Naso, P.H. Chavanis, B. Dubrulle, Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states. Eur. Phys. J. B 77(2), 187–212 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  • L. Onsager, Statistical hydrodynamics. Il Nuovo Cimento 1943–1954(6), 279–287 (1949)

    MathSciNet  Google Scholar 

  • S. Oughton, W.H. Matthaeus, P. Dmitruk, Reduced MHD in astrophysical applications: two-dimensional or three-dimensional? Astrophys. J. 839(1), 2 (2017)

    ADS  Google Scholar 

  • R. Pandit, D. Banerjee, A. Bhatnagar et al., An overview of the statistical properties of two-dimensional turbulence in fluids with particles, conducting fluids, fluids with polymer additives, binary-fluid mixtures, and superfluids. Phys. Fluids 29(11), 111112 (2017)

    ADS  Google Scholar 

  • T. Pestana, S. Hickel, Regime transition in the energy cascade of rotating turbulence. Phys. Rev. E 99(5), 053103 (2019)

    ADS  Google Scholar 

  • J.I. Polanco, G. Krstulovic, Counterflow-induced inverse energy cascade in three-dimensional superfluid turbulence. Phys. Rev. Lett. 125(25), 254504 (2020)

    ADS  Google Scholar 

  • S.B. Pope, S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  • A. Pothérat, R. Klein, Why, how and when MHD turbulence at low RM becomes three-dimensional. J. Fluid Mech. 761, 168–205 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • A. Pothérat, J. Sommeria, R. Moreau, An effective two-dimensional model for MHD flows with transverse magnetic field. J. Fluid Mech. 424, 75–100 (2000)

    ADS  MATH  Google Scholar 

  • B. Poujol, A. van Kan, A. Alexakis, Role of the forcing dimensionality in thin-layer turbulent energy cascades. Phys. Rev. Fluids 5(6), 064610 (2020)

    ADS  Google Scholar 

  • A. Pouquet, N. Yokoi, Helical fluid and (hall)-MHD turbulence: a brief review. Philos. Trans. Roy. Soc. A 380(2219), 20210087 (2022)

    ADS  MathSciNet  Google Scholar 

  • A. Pouquet, R. Marino, P.D. Mininni et al., Dual constant-flux energy cascades to both large scales and small scales. Phys. Fluids 29(11), 111108 (2017)

    ADS  Google Scholar 

  • K.S. Reddy, M.K. Verma, Strong anisotropy in quasi-static magnetohydrodynamic turbulence for high interaction parameters. Phys. Fluids 26(2), 025109 (2014)

    ADS  Google Scholar 

  • M. Rivera, P. Vorobieff, R.E. Ecke, Turbulence in flowing soap films: velocity, vorticity, and thickness fields. Phys. Rev. Lett. 81(7), 1417 (1998)

    ADS  Google Scholar 

  • R. Robert, J. Sommeria, Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291–310 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  • S.W. Seo, B. Ko, J.H. Kim et al., Observation of vortex-antivortex pairing in decaying 2d turbulence of a superfluid gas. Sci. Rep. 7(1), 1–8 (2017)

    ADS  Google Scholar 

  • K. Seshasayanan, Spatial extreme values of vorticity and velocity gradients in two-dimensional turbulent flows. arXiv preprint arXiv:2301.09900 (2023)

  • K. Seshasayanan, A. Alexakis, Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow. Phys. Rev. E 93(1), 013104 (2016)

    ADS  Google Scholar 

  • K. Seshasayanan, A. Alexakis, Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434–462 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • K. Seshasayanan, B. Gallet, Onset of three-dimensionality in rapidly rotating turbulent flows. J. Fluid Mech. 901, R5 (2020). https://doi.org/10.1017/jfm.2020.541

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K. Seshasayanan, S.J. Benavides, A. Alexakis, On the edge of an inverse cascade. Phys. Rev. E 90(5), 051003 (2014)

    ADS  Google Scholar 

  • M. Shats, D. Byrne, H. Xia, Turbulence decay rate as a measure of flow dimensionality. Phys. Rev. Lett. 105(26), 264501 (2010)

    ADS  Google Scholar 

  • L. Siegelman, P. Klein, A.P. Ingersoll et al., Moist convection drives an upscale energy transfer at Jovian high latitudes. Nat. Phys. 18(3), 357–361 (2022a)

    Google Scholar 

  • L. Siegelman, W.R. Young, A.P. Ingersoll, Polar vortex crystals: emergence and structure. Proc. Natl. Acad. Sci. 119(17), e2120486119 (2022b)

    MathSciNet  Google Scholar 

  • L.M. Smith, J.R. Chasnov, F. Waleffe, Crossover from two-to three-dimensional turbulence. Phys. Rev. Lett. 77(12), 2467 (1996)

    ADS  Google Scholar 

  • G. Sofiadis, I.E. Sarris, A. Alexakis, Inducing intermittency in the inverse cascade of two-dimensional turbulence by a fractal forcing. Phys. Rev. Fluids 8(2), 024607 (2023)

    ADS  Google Scholar 

  • A. Sokolov, I.S. Aranson, J.O. Kessler et al., Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98(15), 158102 (2007)

    ADS  Google Scholar 

  • A. Sozza, G. Boffetta, P. Muratore-Ginanneschi et al., Dimensional transition of energy cascades in stably stratified forced thin fluid layers. Phys. Fluids 27(3), 035112 (2015)

    ADS  Google Scholar 

  • N.E. Sujovolsky, P.D. Mininni, Tridimensional to bidimensional transition in magnetohydrodynamic turbulence with a guide field and kinetic helicity injection. Phys. Rev. Fluids 1(5), 054407 (2016)

    ADS  Google Scholar 

  • P. Tabeling, Two-dimensional turbulence: a physicist approach. Phys. Rep. 362(1), 1–62 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Y. Tu, G. Grinstein, M. Munoz, Systems with multiplicative noise: critical behavior from KPZ equation and numerics. Phys. Rev. Lett. 78(2), 274 (1997)

    ADS  Google Scholar 

  • A. van Kan, A. Alexakis, Condensates in thin-layer turbulence. J. Fluid Mech. 864, 490–518 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • A. van Kan, A. Alexakis, Critical transition in fast-rotating turbulence within highly elongated domains. J. Fluid Mech. 899, A33 (2020)

    MathSciNet  MATH  Google Scholar 

  • A. van Kan, A. Alexakis, Energy cascades in rapidly rotating and stratified turbulence within elongated domains. J. Fluid Mech. 933, A11 (2022)

    MathSciNet  MATH  Google Scholar 

  • A. van Kan, F. Pétrélis, 1/f noise and anomalous scaling in Lévy noise-driven on–off intermittency. J. Stat. Mech. Theory Exp. 1, 013204 (2023)

    MATH  Google Scholar 

  • A. van Kan, T. Nemoto, A. Alexakis, Rare transitions to thin-layer turbulent condensates. J. Fluid Mech. 878, 356–369 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • A. van Kan, A. Alexakis, M.E. Brachet, Intermittency of three-dimensional perturbations in a point-vortex model. Phys. Rev. E 103(5), 053102 (2021a)

    ADS  Google Scholar 

  • A. van Kan, A. Alexakis, M.E. Brachet, Lévy on–off intermittency. Phys. Rev. E 103(5), 052115 (2021b)

    ADS  Google Scholar 

  • A. van Kan, A. Alexakis, M. Brachet, Geometric microcanonical theory of two-dimensional truncated euler flows. Philos. Trans. Roy. Soc. A 380(2226), 20210049 (2022)

    MathSciNet  Google Scholar 

  • M.K. Verma, Anisotropy in quasi-static magnetohydrodynamic turbulence. Rep. Prog. Phys. 80(8), 087001 (2017)

    ADS  Google Scholar 

  • P.P. Vieweg, J.D. Scheel, R. Stepanov et al., Inverse cascades of kinetic energy and thermal variance in three-dimensional horizontally extended turbulent convection. Phys. Rev. Res. 4(4), 043098 (2022)

    Google Scholar 

  • A. von Kameke, F. Huhn, G. Fernández-García et al., Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by faraday waves. Phys. Rev. Lett. 107(7), 074502 (2011)

    ADS  Google Scholar 

  • P. Vorobieff, M. Rivera, R. Ecke, Soap film flows: statistics of two-dimensional turbulence. Phys. Fluids 11(8), 2167–2177 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  • D. Wei, Y. Yang, X. Wei et al., Scaling transition of active turbulence from two to three dimensions. arXiv preprint arXiv:2307.15720 (2023)

  • X.L. Wu, A. Libchaber, Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84(13), 3017 (2000)

    ADS  Google Scholar 

  • H. Xia, M. Shats, Inverse energy cascade correlated with turbulent-structure generation in toroidal plasma. Phys. Rev. Lett. 91(155), 001 (2003)

    Google Scholar 

  • H. Xia, M. Shats, G. Falkovich, Spectrally condensed turbulence in thin layers. Phys. Fluids 21(12), 125101 (2009)

    ADS  MATH  Google Scholar 

  • H. Xia, D. Byrne, G. Falkovich et al., Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7(4), 321–324 (2011)

    Google Scholar 

  • J.H. Xie, Downscale transfer of quasigeostrophic energy catalyzed by near-inertial waves. J. Fluid Mech. 904, A40 (2020)

    MathSciNet  MATH  Google Scholar 

  • E. Yarom, E. Sharon, Experimental observation of steady inertial wave turbulence in deep rotating flows. Nat. Phys. 10(7), 510–514 (2014)

    Google Scholar 

  • N. Yokoyama, M. Takaoka, Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence. Phys. Rev. Fluids 2(9), 092602 (2017)

    ADS  Google Scholar 

  • R. Young, P.L. Read, Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nat. Phys. 13(11), 1135–1140 (2017)

    Google Scholar 

  • Y. Zhou, Turbulence theories and statistical closure approaches. Phys. Rep. 935, 1–117 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Alexakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexakis, A. Quasi-two-dimensional turbulence. Rev. Mod. Plasma Phys. 7, 31 (2023). https://doi.org/10.1007/s41614-023-00134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-023-00134-3

Keyword

Navigation