Skip to main content
Log in

Molecular and hydrodynamic descriptions of shear flows in two-dimensional strongly coupled dusty plasmas

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Shear flows in dusty plasmas medium are strongly affected by the spatial correlation between highly charged grains via Yukawa interaction, which is quantified by coupling strength \((\Gamma )\) and screening length \((\kappa )\) of the system. Strongly coupled dusty plasmas are often considered to behave as a viscoelastic fluid medium and can be modeled by a generalized hydrodynamic model. Using a phenomenological generalized hydrodynamic (GHD) model and classical molecular dynamics simulation, the linear and nonlinear dynamics of hydrodynamic-like shear flows in strongly coupled plasma are addressed. Various characteristics of shear flows including laminar to turbulent flow transition, non-linear vortex merger phenomena, incompressible to compressible flow transition, and inertial wave generation have been studied numerically in strongly coupled dusty plasmas. To study the nonlinear evolution of various shear flows, a massively parallelized Advanced Generalized SPECTral Code (AG-Spect) and Multi-Potential Molecular Dynamics (MPMD) with a new Configurational Thermostat code have been chosen. The class of parallel and rotational shear flows studied are assumed to be weakly and strongly compressible in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • F. Akyildiz, R. Jones, K. Walters, On the spring-dashpot representation of linear viscoelastic behaviour. Rheol. Acta 29(5), 482–484 (1990)

    Google Scholar 

  • K.D. Aldridge, L.I. Lumb, Inertial waves identified in the earth’s fluid outer core. Nature 325, 421–423 (1987)

    ADS  Google Scholar 

  • J. Allen, Probe theory-the orbital motion approach. Phys. Scr. 45(5), 497 (1992)

    ADS  MathSciNet  Google Scholar 

  • N. Arnold, On numerical integration of ordinary differential equations. Math. Comp. 16, 22–49 (1962)

    MathSciNet  MATH  Google Scholar 

  • A. Joy, R. Ganesh, Kelvin Helmholtz instability in strongly coupled Yukawa liquids. Phys. Rev. Lett. 104, 215003 (2010)

    ADS  Google Scholar 

  • P. Bandyopadhyay, G. Prasad, A. Sen, P. Kaw, Driven transverse shear waves in a strongly coupled dusty plasma. Phys. Lett. A 372(33), 5467–5470 (2008)

    ADS  MATH  Google Scholar 

  • I. Bena, M.M. Mansour, F. Baras, Hydrodynamic fluctuations in the Kolmogorov flow: linear regime. Phys. Rev. E 59, 5503 (1999)

    ADS  MathSciNet  Google Scholar 

  • M.A. Berkovsky, Spectrum of low frequency modes in strongly coupled plasmas. Phys. Lett. A 166, 365–368 (1992)

    ADS  Google Scholar 

  • J.P. Boeuf, Characteristics of a dusty nonthermal plasma from a particle-in-cell monte Carlo simulation. Phys. Rev. A 46, 7910–7922 (1992)

    ADS  Google Scholar 

  • G. Boffetta, R.E. Ecke, Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44(1), 427–451 (2012). https://doi.org/10.1146/annurev-fluid-120710-101240

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Boffetta, A. Celani, A. Mazzino, A. Puliafito, M. Vergassola, The viscoelastic Kolmogorov flow: eddy viscosity and linear stability. J. Fluid Mech. 523, 161–170 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • N.F. Bondarenko, M.Z.G. Dolzhansky, F.V. Izv, Akad. Nauk (Fiz. Atmos. Okeana) 15, 1017 (1979)

    ADS  Google Scholar 

  • M. Bonitz, C. Henning, D. Block, Complex plasmas: a laboratory for strong correlations. Rep. Prog. Phys. 73(6), 066501 (2010). https://doi.org/10.1088/0034-4885/73/6/066501

    Article  ADS  Google Scholar 

  • L. Boufendi, A. Bouchoule, Industrial developments of scientific insights in dusty plasmas. Plasma Sources Sci. Technol. 11(3A), 211–218 (2002)

    ADS  Google Scholar 

  • L. Boufendi, M.C. Jouanny, E. Kovacevic, J. Berndt, M. Mikikian, Dusty plasma for nanotechnology. J. Phys. D Appl. Phys. 44(17), 174035 (2011). https://doi.org/10.1088/0022-3727/44/17/174035

    Article  ADS  Google Scholar 

  • C. Braga, K.P. Travis, A configurational temperature nose-hoover thermostat. J. Chem. Phys. 123(13), 134101 (2005)

    ADS  Google Scholar 

  • J.M. Burgess, C. Bizon, W.D. McCormick, J.B. Swift, H.L. Swinney, Instability of the Kolmogorov flow in a soap film. Phys. Rev. E 60, 715–721 (1999)

    ADS  Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961)

    MATH  Google Scholar 

  • H. Charan, R. Ganesh, Observation of the Rayleigh Benard convection cells in strongly coupled Yukawa liquids. Phys. Plasmas 22(8), 083702 (2015)

    ADS  Google Scholar 

  • J. H. Chu,  Lin. I, Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009 (1994)

    ADS  Google Scholar 

  • Y. Couder, The observation of a shear flow instability in a rotating system with a soap membrane. J. Phys. Lett. 42(19), 429–431 (1981). https://doi.org/10.1051/jphyslet:019810042019042900

    Article  Google Scholar 

  • E.A. Coutsias, F.R. Hansen, T. Huld, G. Knorr, J.P. Lynov, Spectral methods in numerical plasma simulation. Phys. Scr. 40(3), 270 (1989)

    ADS  Google Scholar 

  • B. Cushman-Roisin, J.-M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, 2nd Edition Volume 101 (Academic Press, 2011)

    MATH  Google Scholar 

  • U. de Angelis, Dusty plasmas in fusion devices. Phys. Plasmas 13(1), 012514 (2006). https://doi.org/10.1063/1.2163817

    Article  ADS  Google Scholar 

  • G.S. Deem, N.J. Zabusky, Vortex waves: stationary" v states," interactions, recurrence, and breaking. Phys. Rev. Lett. 40(13), 859 (1978)

    ADS  Google Scholar 

  • V.S. Dharodi, Rotating vortices in two-dimensional inhomogeneous strongly coupled dusty plasmas: Shear and spiral density waves. Phys. Rev. E 102, 043216 (2020). https://doi.org/10.1103/PhysRevE.102.043216

    Article  ADS  Google Scholar 

  • A. Diaw, M.S. Murillo, Generalized hydrodynamics model for strongly coupled plasmas. Phys. Rev. E 92, 013107 (2015). https://doi.org/10.1103/PhysRevE.92.013107

    Article  ADS  Google Scholar 

  • P.G. Drazin, Intoduction to Hydrodynamic Stability (Cambridge text in applied mathematics University Press, Cambridge, 2002)

    Google Scholar 

  • D.J. Evans, O.P. Morriss, Non-Newtonian molecular dynamics. Comput. Phys. Rep. 1(6), 297–343 (1984)

    ADS  Google Scholar 

  • K.S. Fancey, A mechanical model for creep, recovery and stress relaxation in polymeric materials. J. Mater. Sci. 40(18), 4827–4831 (2005)

    ADS  Google Scholar 

  • B. Favier, A. Barker, C. Baruteau, G. Ogilvie, Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. R. Astron. Soc. 439(1), 845–860 (2014)

    ADS  Google Scholar 

  • Y. Feng, J. Goree, B. Liu, Observation of temperature peaks due to strong viscous heating in a dusty plasma flow. Phys. Rev. Lett. 109, 185002 (2012)

    ADS  Google Scholar 

  • F. Feudel, N. Seehafer, Bifurcations and pattern formation in a two-dimensional Navier-Stokes fluid. Phys. Rev. E 52, 3506–3511 (1995). https://doi.org/10.1103/PhysRevE.52.3506

    Article  ADS  MathSciNet  Google Scholar 

  • V.E. Fortov, V.I. Molotkov, A.P. Nefedov, O.F. Petrov, Liquid- and crystallike structures in strongly coupled dusty plasmas. Phys. Plasmas 6(5), 1759–1768 (1999)

    ADS  Google Scholar 

  • Y.I. Frenkel, Kinetic Theory of Liquids (Clarendon, Oxford, 1946)

    MATH  Google Scholar 

  • U. Frisch, A. Kolmogorov, Turbulence: The Legacy of AN Kolmogorov (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  • R. Ganesh, J. Lee, Formation of quasistationary vortex and transient hole patterns through vortex merger. Phys. Plasmas 9(11), 4551–4559 (2002)

    ADS  MathSciNet  Google Scholar 

  • C.W. Gear, The numerical integration of ordinary differential equations. Math. Comp. 21, 146–156 (1967)

    MathSciNet  MATH  Google Scholar 

  • W.J. Goedheer, Y.I. Chutov, Pic/mc modeling of dusty plasmas. AIP Conf. Proc. 762(1), 1143–1148 (2005). https://doi.org/10.1063/1.1941688

    Article  ADS  Google Scholar 

  • K.I. Golden, G.J. Kalman, Quasilocalized charge approximation in strongly coupled plasma physics. Phys. Plasmas 7(1), 14–32 (2000). https://doi.org/10.1063/1.873814

    Article  ADS  Google Scholar 

  • A. Gupta, R. Ganesh, Compressibility effects on a shear flow in strongly coupled dusty plasma. I. a study using computational fluid dynamics. Phys. Plasmas 25(1), 013705 (2018). https://doi.org/10.1063/1.5013058

    Article  ADS  Google Scholar 

  • A. Gupta, R. Ganesh, The emergence of inertial waves from coherent vortex source in strongly coupled dusty plasma. Phys. Plasmas 27(5), 050701 (2020). https://doi.org/10.1063/5.0004802

    Article  ADS  Google Scholar 

  • A. Gupta, R. Ganesh, A. Joy, Kolmogorov flow in two dimensional strongly coupled dusty plasma. Phys. Plasmas 21(7), 073703 (2014)

    ADS  Google Scholar 

  • A. Gupta, R. Ganesh, A. Joy, Kolmogorov flow in two dimensional strongly coupled Yukawa liquid: a molecular dynamics study. Phys. Plasmas 22(10), 103706 (2015)

    ADS  Google Scholar 

  • A. Gupta, R. Ganesh, A. Joy, Molecular shear heating and vortex dynamics in thermostatted two dimensional Yukawa liquids. Phys. Plasmas 23(7), 073706 (2016)

    ADS  Google Scholar 

  • A. Gupta, R. Ganesh, A. Joy, Compressible Kolmogorov flow in strongly coupled dusty plasma using molecular dynamics and computational fluid dynamics. ii. a comparative study. Phys. Plasmas 25(1), 013706 (2018). https://doi.org/10.1063/1.5013060

    Article  ADS  Google Scholar 

  • A. Gupta, R. Jayaram, A.G. Chaterjee, S. Sadhukhan, R. Samtaney, M.K. Verma, Energy and enstrophy spectra and fluxes for the inertial-dissipation range of two-dimensional turbulence. Phys. Rev. E 100, 053101 (2019a). https://doi.org/10.1103/PhysRevE.100.053101

    Article  ADS  MathSciNet  Google Scholar 

  • A. Gupta, R. Mukherjee, R. Ganesh, Viscoelastic effects on asymmetric two-dimensional vortex patterns in a strongly coupled dusty plasma. Contrib. Plasma Phys. 59(8), 201800189 (2019b). https://doi.org/10.1002/ctpp.201800189

    Article  ADS  Google Scholar 

  • S. Hamaguchi, R.T. Farouki, D.H.E. Dubin, Phase diagram of Yukawa systems near the one component plasma limit revisited. J. Chem. Phys. 105(17), 7641–7647 (1996). https://doi.org/10.1063/1.472802

    Article  ADS  Google Scholar 

  • P. Hartmann, G.J. Kalman, Z. Donkó, K. Kutasi, Equilibrium properties and phase diagram of two-dimensional Yukawa systems. Phys. Rev. E 72, 026409 (2005)

    ADS  Google Scholar 

  • S. Ichimaru, H.I., Tanaka, S. Phys. Rev. A 149(91), 91–205 (1987)

  • H. Ikezi, Phys. Fluids 26(1749), 1764 (1986)

  • A. Joy, R. Ganesh, Coevolution of inverse cascade and nonlinear heat front in shear flows of strongly coupled Yukawa liquids. Phys. Plasmas 18(8), 135001 (2011)

  • A. Joy, R. Ganesh, Effect of external drive on strongly coupled Yukawa systems: a nonequilibrium molecular dynamics study. Phys. Rev. E 80, 056408 (2009)

    ADS  Google Scholar 

  • S. Kalita, R. Ganesh, Spot formation in three-dimensional Yukawa liquid. Phys. Fluids 33(9), 095118 (2021). https://doi.org/10.1063/5.0060089

    Article  ADS  Google Scholar 

  • P. Kaur, R. Ganesh, Negative entropy-production rate in Rayleigh-Bénard convection in two-dimensional Yukawa liquids. Phys. Rev. E 100, 053201 (2019). https://doi.org/10.1103/PhysRevE.100.053201

    Article  ADS  Google Scholar 

  • P.K. Kaw, Collective modes in a strongly coupled dusty plasma. Phys. Plasmas 8(5), 1870–1878 (2001). https://doi.org/10.1063/1.1348335

    Article  ADS  MathSciNet  Google Scholar 

  • P.K. Kaw, A. Sen, Low frequency modes in strongly coupled dusty plasmas. Phys. Plasmas 5, 10–3552 (1998)

    Google Scholar 

  • D.H. Kelley, N.T. Ouellette, Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment. Am. J. Phys. 79, 267 (2011)

    ADS  Google Scholar 

  • R.H. Kraichnan, Inertial ranges in two-dimensional turbulence. Phys. Fluids 10(7), 1417–1423 (1967). https://doi.org/10.1063/1.1762301

    Article  ADS  Google Scholar 

  • P.K. Kundu, I.M. Cohen, D.R. Dowling, Fluid Mechanics, 6th edn. (Academic Press, San Diego, 2015)

    Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1984)

    Google Scholar 

  • I. Lansky, T. O’Neil, D. Schecter, A theory of vortex merger. Phys. Rev. Lett. 79(8), 1479 (1997)

    ADS  Google Scholar 

  • B. Liu, J. Goree, Shear viscosity of two-dimensional Yukawa systems in the liquid state. Phys. Rev. Lett. 94, 185002 (2005)

    ADS  Google Scholar 

  • D. Luo, B. Zhao, G. Hu, T. Gong, Y. Xia, J. Zheng, Coherent dynamic structure factors of strongly coupled plasmas: a generalized hydrodynamic approach. Phys. Plasmas (2016). https://doi.org/10.1063/1.4948623

    Article  Google Scholar 

  • A. Manela, J. Zhang, The effect of compressibility on the stability of wall-bounded Kolmogorov flow. J. Fluid Mech. 694, 29–49 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • C. Marchioro, An example of absence of turbulence for any Reynolds number. Commun. Math. Phys. 105(1), 99–106 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  • K. Matyash, R. Schneider, F. Taccogna, A. Hatayama, S. Longo, M. Capitelli, D. Tskhakaya, F.X. Bronold, Particle in cell simulation of low temperature laboratory plasmas. Contrib. Plasma Phys. 47(8–9), 595–634 (2007)

    ADS  Google Scholar 

  • R. Merlino, Dusty plasmas: from Saturn’s rings to semiconductor processing devices. Adv. Phys. X 6(1), 1873859 (2021). https://doi.org/10.1080/23746149.2021.1873859

    Article  Google Scholar 

  • R.L. Merlino, J.A. Goree, Dusty plasmas in the laboratory, industry, and space. Phys. Today 57(7), 32–39 (2004)

    Google Scholar 

  • L.D. Meshalkin, Y.G. Sinai, J. Appl. Math. Mech. 25, 1700 (1961)

    MathSciNet  Google Scholar 

  • G.E. Morfill, A.V. Ivlev, Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 1353 (2009)

    ADS  Google Scholar 

  • G.E. Morfill, H.M. Thomas, U. Konopka, M. Zuzic, The plasma condensation: liquid and crystalline plasmas. Phys. Plasmas 6(5), 1769–1780 (1999)

    ADS  Google Scholar 

  • R. Mukherjee, A. Gupta, R. Ganesh, Compressibility effects on quasistationary vortex and transient hole patterns through vortex merger. Phys. Scr. 94(11), 115005 (2019). https://doi.org/10.1088/1402-4896/ab1a6a

    Article  ADS  Google Scholar 

  • A.A. Nepomniashchii, On stability of secondary flows of a viscous fluid in unbounded space. J. Appl. Math. Mech. 40(5), 836–841 (1976). https://doi.org/10.1016/0021-8928(76)90013-7

    Article  Google Scholar 

  • V. Nosenko, S. Nunomura, J. Goree, Nonlinear compressional pulses in a 2d crystallized dusty plasma. Phys. Rev. Lett. 88(21), 215002 (2002a)

    ADS  Google Scholar 

  • V. Nosenko, J. Goree, Z. Ma, A. Piel, Observation of shear-wave Mach cones in a 2d dusty-plasma crystal. Phys. Rev. Lett. 88(13), 135001 (2002b)

    ADS  Google Scholar 

  • V. Nosenkol, J. Goree, Shear flows and shear viscosity in a two-dimensional Yukawa system (dusty plasma). Phys. Rev. Lett. 93(15), 155004 (2004)

    ADS  Google Scholar 

  • S. Nunomura, D. Samsonov, J. Goree, Transverse waves in a two-dimensional screened-Coulomb crystal (dusty plasma). Phys. Rev. Lett. 84(22), 5141 (2000)

    ADS  Google Scholar 

  • A.M. Obukhov, Kolmogorov flow and laboratory simulation of it. Russ. Math. Surv. 38, 113 (1983)

    Google Scholar 

  • H. Ohta, S. Hamaguchi, Molecular dynamics evaluation of self-diffusion in Yukawa systems. Phys. Plasmas 7(11), 4506–4514 (2000)

    ADS  Google Scholar 

  • H. Okamoto, M. Shōji, Bifurcation diagrams in Kolmogorov’s problem of viscous incompressible fluid on 2-d flat tori. Jpn. J. Ind. Appl. Math. 10(2), 191–218 (1993)

    MathSciNet  MATH  Google Scholar 

  • R. Pandit, P. Perlekar, S.S. Ray, Statistical properties of turbulence: an overview. Pramana 73, 157–191 (2009)

    ADS  Google Scholar 

  • G.S. Patterson, S.A. Orszag, Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids (1958-1988) 14(11), 2538–2541 (1971)

    MATH  Google Scholar 

  • J. Pedlosky et al., Geophysical Fluid Dynamics, 710 p. (Springer Verlag, New York, 1987)

    MATH  Google Scholar 

  • P. Perlekar, R. Pandit, Statistically steady turbulence in thin films: direct numerical simulations with Ekman friction. New J. Phys. 11(7), 073003 (2009). https://doi.org/10.1088/1367-2630/11/7/073003

    Article  ADS  Google Scholar 

  • A. Piel, V. Nosenko, J. Goree, Laser-excited shear waves in solid and liquid two-dimensional dusty plasmas. Phys. Plasmas 13(4), 042104 (2006)

    ADS  Google Scholar 

  • J. Pramanik, G. Prasad, A. Sen, P.K. Kaw, Experimental observations of transverse shear waves in strongly coupled dusty plasmas. Phys. Rev. Lett. 88, 175001 (2002). https://doi.org/10.1103/PhysRevLett.88.175001

    Article  ADS  Google Scholar 

  • N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Sp. Sci. 38, 543 (1990)

    ADS  Google Scholar 

  • S.S. Ray, D. Mitra, R. Pandit, The universality of dynamic multiscaling in homogeneous, isotropic Navier–Stokes and passive-scalar turbulence. New J. Phys. 10(3), 033003 (2008). https://doi.org/10.1088/1367-2630/10/3/033003

    Article  Google Scholar 

  • M. Rosenberg, G. Kalman, Dust acoustic waves in strongly coupled dusty plasmas. Phys. Rev. E 56, 7166–7173 (1997)

    ADS  Google Scholar 

  • L. Rossi, J. Vassilicos, Y. Hardalupas, Electromagnetically controlled multi-scale flows. J. Fluid Mech. 558, 207 (2006)

    ADS  MATH  Google Scholar 

  • D. Roylance, Engineering Viscoelasticity (Department of Materials Science and Engineering–Massachusetts Institute of Technology, Cambridge, 2001), pp.1–37

    Google Scholar 

  • G. Salin, J.-M. Caillol, Transport coefficients of the Yukawa one-component plasma. Phys. Rev. Lett. 88, 065002 (2002)

    ADS  Google Scholar 

  • D. Samsonov, J. Goree, Z. Ma, A. Bhattacharjee, H. Thomas, G. Morfill, Mach cones in a coulomb lattice and a dusty plasma. Phys. Rev. Lett. 83(18), 3649 (1999)

    ADS  Google Scholar 

  • H.-G.H. Schöpf, p. greenspan, the theory of rotating fluids. (Cambridge monographs on mechanics and applied mathematics). J. Appl. Math. Mech. 49(8), 513 (1969)

    Google Scholar 

  • Z.S. She, Metastability and vortex pairing in the Kolmogorov flow. Phys. Lett. A 124(3), 161–164 (1987)

    ADS  MathSciNet  Google Scholar 

  • V. Singh Dharodi, S. Kumar Tiwari, A. Das, Visco-elastic fluid simulations of coherent structures in strongly coupled dusty plasma medium. Phys. Plasmas (2014). https://doi.org/10.1063/1.4888882

    Article  Google Scholar 

  • A. Thess, Instabilities in two-dimensional spatially periodic flows. Part i: Kolmogorov flow. Phys. Fluids A Fluid Dyn. (1989-1993) 4, 1385 (1992)

    MATH  Google Scholar 

  • H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652–655 (1994). https://doi.org/10.1103/PhysRevLett.73.652

    Article  ADS  Google Scholar 

  • S.K. Tiwari, A. Das, D. Angom, B.G. Patel, P. Kaw, Kelvin-Helmholtz instability in a strongly coupled dusty plasma medium. Phys. Plasmas  19(7), 073703 (2012)

    ADS  Google Scholar 

  • K.P. Travis, C. Braga, Configurational temperature control for atomic and molecular systems. J. Chem. Phys. 128(1), 014111 (2008)

    ADS  Google Scholar 

  • K. Zhang, P. Earnshaw, X. Liao, F.H. Busse, On inertial waves in a rotating fluid sphere. J. Fluid Mech. 437, 103–119 (2001). https://doi.org/10.1017/S0022112001004049

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. R. Ganesh (Institute for Plasma Research, India), Dr. A. Joy (Indian Institute of Technology Madras, India), Dr. R. Mukherjee (Princeton Plasma Physics Laboratory, Princeton University, USA) for their valuable discussions and contributions in the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akanksha Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A. Molecular and hydrodynamic descriptions of shear flows in two-dimensional strongly coupled dusty plasmas. Rev. Mod. Plasma Phys. 6, 21 (2022). https://doi.org/10.1007/s41614-022-00082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-022-00082-4

Keywords

Navigation