Skip to main content
Log in

Shear flow driven instability in an incompressible dusty plasma with a density dependent viscosity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The influence of viscosity gradient (via density) in an incompressible dusty plasma is analyzed. It is shown that for a well known dusty plasma model, the density dependence of viscosity leads to shear driven instability in a weakly coupled dusty plasma. The inhomogeneous viscous force coupled with density inhomogeneity in presence of velocity shear is responsible for this instability. For any finite value of shear flow parameter the viscous gradient force surpasses the viscous dissipation leading to instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V E Fortov, I T Iakubov and A G Khrapak Physics of Strongly Coupled Plasmna (Clarendon, Oxford) (2006)

    Book  MATH  Google Scholar 

  2. V Nosenko, J Goree and A Piel Phys. Plasmas. 13 032106 (2006)

    Article  ADS  Google Scholar 

  3. H Thomas, G E Morfill, V Demmel, J Goree and B F D Möhlmann Phys. Rev. Lett. 73 1994 (1994)

    Article  Google Scholar 

  4. G E Morfill, H M Thomas, U Konopka and M Zuzic Phys. Plasmas 6 1769 (1999)

    Article  ADS  Google Scholar 

  5. B Sahu and R Roychoudhury Indian J. Phys. 86 401 (2012)

    Article  ADS  Google Scholar 

  6. S A Khrapak et al. Phys. Rev. E 72 016406 (2005)

    Article  ADS  Google Scholar 

  7. S A Khrapak, A V Ivlev and G Morfil Phys. Rev. E 70 056405 (2004)

    Article  ADS  Google Scholar 

  8. C K Goertz Rev. Geophys. 27 271 (1989)

    Article  ADS  Google Scholar 

  9. N N Rao, P K Shukla and M Y Yu Planet. Space Sci. 38 543 (1998)

    Article  ADS  Google Scholar 

  10. P Chatterjee, B Das and C S Wong Indian J. Phys. 86 529 (2012)

    Article  ADS  Google Scholar 

  11. S Ichimaru Rev. Mod. Phys. 54 1017 (1982)

    Article  ADS  Google Scholar 

  12. H Ikezi Phys. Fluids 29 1764 (1986)

    Article  ADS  Google Scholar 

  13. G Ganguli and L Rudakov Phys. Rev. Lett. 93 135001 (2004)

    Article  ADS  Google Scholar 

  14. D Banerjee, S Garai, M S Janaki and N Chakrabarti Phys. Plasmas 20 073702 (2013)

    Article  ADS  Google Scholar 

  15. P K Kaw and A Sen Phys. Plasmas 5 3552 (1998)

    Article  ADS  Google Scholar 

  16. D Banerjee, M. S. Janaki and N. Chakrabarti Phys. Rev. E. 85 066408 (2012)

    Article  ADS  Google Scholar 

  17. S Garai, D Banerjee, M S Janaki and N Chakrabarti AIP Conf. Proc. 1582 93 (2014)

    Article  ADS  Google Scholar 

  18. A Mishra, P K Kaw and A Sen Phys. Plasmas 7 3188 (2000)

    Article  ADS  Google Scholar 

  19. S Garai, D Banerjee, M S Janaki and N Chakrabarti Astrophys. Space Sci. 349 789 (2014)

    Article  ADS  Google Scholar 

  20. O S Vaulina, A P Nefedov, O F Petrov and V E Fortov J. Exp. Theor. Phys. 91 1147 (2000)

    Article  ADS  Google Scholar 

  21. I I Lisina and O S Vaulina EPL 103 55002 (2013)

    Article  ADS  Google Scholar 

  22. V A Schweigert, I V Schweigert, A Melzer, A Homann and A Piel Phys. Rev. Lett. 80 5345 (1998)

    Article  ADS  Google Scholar 

  23. S K Zhdanov, A V Ivlev and G E Morfill Phys. Plasmas 16 083706 (2009)

    Article  ADS  Google Scholar 

  24. V Nosenko and J Goree Phys. Rev. Lett. 93 155004 (2004)

    Article  ADS  Google Scholar 

  25. B Liu and J Goree Phys. Rev. Lett. 94 185002 (2005)

    Article  ADS  Google Scholar 

  26. A V Gavrikov et al. J. Plasma Phys. 76 579 (2010)

    Article  ADS  Google Scholar 

  27. A V Ivlev, V Steinberg, R Kompaneets, H Höfner, I Sidorenko and G E Morfill Phys. Rev. Lett. 98 145003 (2007)

    Article  ADS  Google Scholar 

  28. S Garai, D Banerjee, M S Janaki and N Chakrabarti Phys. Plasmas 22 033702 (2015)

    Article  ADS  Google Scholar 

  29. S Ghosh, M R Gupta, N Chakrabarti and M Chadhuri Phys. Rev. E 83 066406 (2011)

    Article  ADS  Google Scholar 

  30. A Furukawa and H Tanaka Nature 443 434 (2006)

    Article  ADS  Google Scholar 

  31. V Steinberg, A V Ivlev, R Kompaneets and G E Morfill Phys. Rev. Lett. 100 254502 (2008)

    Article  ADS  Google Scholar 

  32. L D Landau and E M Lifshitz Fluid Mechanics 2nd edition (Oxford: Butterworth-Heinemann) (1987)

    MATH  Google Scholar 

  33. J Kestin, Ö Korfali and J V Sengers Physica A 100 335 (1980)

    Article  ADS  Google Scholar 

  34. G K Batchelor The Theory of Homogeneous Turbulence (Cambridge, England: Cambridge University Press) (1953)

    MATH  Google Scholar 

  35. J Stickel and R Powell Rev. Fluid Mech. 37 129 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  36. T Saigo and S Hamaguchi Phys. Plasmas 9 1210 (2002)

    Article  ADS  Google Scholar 

  37. E Infeld, G Rowlands and A A Skorupski Phys. Rev. Lett. 102 145005 (2009)

    Article  ADS  Google Scholar 

  38. J Pramanik, G Prasad, A Sen and P K Kaw Phys. Rev. Lett. 88 17500 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Garai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garai, S., Banerjee, D., Janaki, M.S. et al. Shear flow driven instability in an incompressible dusty plasma with a density dependent viscosity. Indian J Phys 90, 717–724 (2016). https://doi.org/10.1007/s12648-015-0800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0800-y

Keywords

PACS Nos.

Navigation