Skip to main content
Log in

Linear and nonlinear waves in quantum plasmas with arbitrary degeneracy of electrons

  • Special Topics
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

The purpose of this review is to revisit recent results in the literature where quantum plasmas with arbitrary degeneracy degree are considered. This is different from a frequent approach, where completely degeneracy is assumed in dense plasmas. The general reasoning in the reviewed works is to take a numerical coefficient in from of the Bohm potential term in quantum fluids, in order to fit the linear waves from quantum kinetic theory in the long wavelength limit. Moreover, the equation of state for the ideal Fermi gas is assumed, for arbitrary degeneracy degree. The quantum fluid equations allow the expedite derivation of weakly nonlinear equations from reductive perturbation theory. In this way, quantum Korteweg–de Vries and quantum Zakharov–Kuznetsov equations are derived, together with the conditions for bright and dark soliton propagation. Quantum ion-acoustic waves in unmagnetized and magnetized plasmas, together with magnetosonic waves, have been obtained for arbitrary degeneracy degree. The conditions for the application of the models, and the physical situations where the mixed dense–dilute systems exist, have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M. Akbari-Moghanjoughi, Hydrodynamic limit of Wigner–Poisson kinetic theory: revisited. Phys. Plasmas 22, 022103 (2015)

    ADS  Google Scholar 

  • A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics, vol. I, II (Pergamon, Oxford, 1975)

    Google Scholar 

  • J.R. Barker, D.K. Ferry, On the validity of quantum hydrodynamics for describing antidot array devices. Semicond. Sci. Technol. 13, A135 (1998)

    ADS  Google Scholar 

  • VYu. Belashov, S.V. Vladimirov, Solitary Waves in Dispersive Complex Media (Springer, Berlin, 2005)

    MATH  Google Scholar 

  • P.A. Bernhardt, C.A. Selcher, R.H. Lehmberg, S. Rodriguez, J. Thomason, M. McCarrick, G. Frazer, Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped Stimulated Brillouin Scatter (SBS) emission lines. Ann. Geophys. 27, 4409 (2009)

    ADS  Google Scholar 

  • D. Bohm, D. Pines, A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609 (1953)

    ADS  MathSciNet  MATH  Google Scholar 

  • M. Bonitz, Z.A. Moldabekov, T.S. Ramazanov, Quantum hydrodynamics for plasmas-Quo vadis? Phys. Plasmas 26, 090601 (2019)

    ADS  Google Scholar 

  • M. Bonitz, T. Dornheim, Z.A. Moldabekov, S. Zhang, P. Hamann, H. Khälert, A. Filinov, K. Ramakrishna, J. Vorberger, Phys. Plasmas 27, 042710 (2020)

    ADS  Google Scholar 

  • G. Brodin, R. Ekman, J. Zamanian, Plasma Phys. Control. Fusion 59, 014043 (2017)

    ADS  Google Scholar 

  • J.E. Cross, B. Reville, G. Gregori, Scaling of magneto-quantum-radiative hydrodynamics equations: from laser-produced plasmas to astrophysics. Astrophys. J. 795, 59 (2014)

    ADS  Google Scholar 

  • N. Crouseilles, P.-A. Hervieux, G. Manfredi, Phys. Rev. B 78, 155412 (2008)

    ADS  Google Scholar 

  • R.C. Davidson, Methods in Nonlinear Plasma Theory (Academic Press, New York, 1972)

    Google Scholar 

  • A.E. Dubinov, I.N. Kitaev, Non-linear Langmuir waves in a warm quantum plasma. Phys. Plasmas 21, 102105 (2014)

    ADS  Google Scholar 

  • A.E. Dubinov, A.A. Dubinova, M.A. Sazokin, Nonlinear theory of the isothermal ion-acoustic waves in the warm degenerate plasma. J. Commun. Technol. Electron. 55, 907 (2010)

    Google Scholar 

  • B. Eliasson, M. Akbari-Mghanjoughi, Finite temperature static charge screening in quantum plasmas. Phys. Lett. A 380, 2518 (2016)

    ADS  Google Scholar 

  • B. Eliasson, P.K. Shukla, Nonlinear quantum fluid equations for a finite temperature Fermi plasma. Phys. Scr. 78, 025503 (2008)

    ADS  MATH  Google Scholar 

  • B. Eliasson, P.K. Shukla, Dispersion properties of electrostatic oscillations in quantum plasmas. J. Plasma Phys. 76, 7 (2010)

    ADS  Google Scholar 

  • C.L. Gardner, The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54, 409 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  • F. Haas, Quantum Plasmas: An Hydrodynamic Approach (Springer, New York, 2011)

    Google Scholar 

  • F. Haas, S. Mahmood, Linear and nonlinear ion-acoustic waves in non-relativistic quantum plasmas with arbitrary degeneracy. Phys. Rev. E 92, 053112 (2015)

    ADS  MathSciNet  Google Scholar 

  • F. Haas, S. Mahmood, Nonlinear ion-acoustic solitons in a magnetized quantum plasma with arbitrary degeneracy of electrons. Phys. Rev. E 94, 033212 (2016)

    ADS  Google Scholar 

  • F. Haas, S. Mahmood, Magnetosonic waves in a quantum plasma with arbitrary electron degeneracy. Phys. Rev. E 97, 063206 (2018)

    ADS  Google Scholar 

  • F. Haas, L.G. Garcia, J. Goedert, G. Manfredi, Quantum ion-acoustic waves. Phys. Plasmas 10, 3858 (2003)

    ADS  Google Scholar 

  • S. Hussain, S. Mahmood, Magnetosonic hump and dip solitons in a quantum plasma with Bohm potential effect. Phys. Plasmas 24, 032122 (2017)

    ADS  Google Scholar 

  • S. Ichimaru, Statistical Plasma Physics, Volume II: Condensed Plasmas (Westview, Oxford, 2004)

  • H. Ikezi, Experiments on ion-acoustic solitary waves. Phys. Fluids 16, 1668 (1973)

    ADS  Google Scholar 

  • H. Ikezi, R.J. Taylor, D.R. Baker, Formation and interaction of ion-acoustic solitons. PRL 25, 12 (1970)

    ADS  Google Scholar 

  • E. Infeld, Self-focusing of nonlinear ion-acoustic waves and solitons in magnetized plasmas. J. Plasma Phys. 33, 171 (1985)

    ADS  Google Scholar 

  • T. Kawahara, Oscillatory solitary waves in dispersive media. Phys. Soc. Jpn. 33, 260 (1972)

    ADS  Google Scholar 

  • S.A. Khan, W. Masood, Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas. Phys. Plasmas 15, 062301 (2008)

    ADS  Google Scholar 

  • I. Kourakis, W.M. Moslem, U.M. Abdelsalam, R. Sabry, P.K. Shukla, Nonlinear dynamics of rotating multi-component pair plasmas and e-p-i plasmas. Plasma Fusion Res. 4, 018 (2009)

    ADS  Google Scholar 

  • D. Kremp, M. Schlanges, W.-D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)

    MATH  Google Scholar 

  • E.W. Laedke, K.H. Spatschek, Nonlinear ion-acoustic waves in weak magnetic fields. Phys. Fluids 25, 985 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  • L. Lewin, Polylogarithms and Associated Functions (North-Holland, New York, 1981)

    MATH  Google Scholar 

  • E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981)

    Google Scholar 

  • N. Maafa, Dispersion relation in a plasma with arbitrary degeneracy. Phys. Scr. 48, 351 (1993)

    ADS  Google Scholar 

  • R.L. Mace, M.A. Hellberg, The Korteweg–de Vries–Zakharov–Kuznetsov equation for electron-acoustic waves. Phys. Plasmas 8, 2649 (2001)

    ADS  Google Scholar 

  • S. Mahmood, F. Haas, Ion-acoustic cnoidal waves in a quantum plasma. Phys. Plasmas 21, 102308 (2014)

    ADS  Google Scholar 

  • G. Manfredi, P. Hervieux, J. Hurst, Fluid description of quantum plasmas. Rev. Mod. Plasma Phys. 5, 7 (2021)

    ADS  Google Scholar 

  • G. Manfredi, P. Hervieux, J. Hurst, Phase-space modeling of solidstate plasmas. Rev. Mod. Plasma Phys. 3, 13 (2019)

    ADS  Google Scholar 

  • D.B. Melrose, A. Mushtaq, Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil. Phys. Rev. E 82, 056402 (2010)

    ADS  Google Scholar 

  • D. Michta, F. Graziani, M. Bonitz, Quantum hydrodynamics for plasmas—a Thomas–Fermi theory perspective. Contrib. Plasma Phys. 55, 437 (2015)

    ADS  Google Scholar 

  • A.P. Misra, P.K. Shukla, Stability and evolution of wave packets in strongly coupled degenerate plasmas. Phys. Rev. E 85, 026409 (2012)

    ADS  Google Scholar 

  • M. Mohammadnejad, M. Akbari-Moghanjughi, Formation of ion-acoustic rogue waves in warm dense matter. Eur. Phys. J. D. 75, 307 (2021)

    ADS  Google Scholar 

  • Z.A. Moldabekov, T. Schoof, P. Ludwig, M. Bonitz, T. Ramazanov, Statistically screened ion potential and Bohm potential in a quantum plasma. Phys. Plasmas 22, 102104 (2015)

    ADS  Google Scholar 

  • Z.A. Moldabekov, M. Bonitz, T.S. Ramazanov, Theoretical foundations of quantum hydrodynamics for plasmas. Phys. Plasmas 25, 031903 (2018)

    ADS  Google Scholar 

  • W.M. Moslem, S. Ali, P.K. Shukla, X.Y. Tang, G. Rowlands, Solitary, explosive, and periodic solutions of the quantum Zakharov–Kuznetsov equation and its transverse instability. Phys. Plasmas 14, 082308 (2007)

    ADS  Google Scholar 

  • M.S. Murillo, Strongly coupled plasma physics and high energy-density matter. Phys. Plasmas 11, 2964 (2004)

    ADS  Google Scholar 

  • A. Mushtaq, D.B. Melrose, Quantum effects on the dispersion of ion-acoustic waves. Phys. Plasmas 16, 102110 (2009)

    ADS  Google Scholar 

  • Y. Ohsawa, J. Sakai, Non stochastic prompt proton acceleration by fast magnetosonic shocks in the solar plasma. Astrophys. J. 313, 440 (1987)

    ADS  Google Scholar 

  • R.K. Pathria, P.D. Beale, Statistical Mechanics, 3rd edn. (Elsevier, New York, 2011)

    MATH  Google Scholar 

  • H.L. Rubin, T.R. Govindan, J.P. Kreskovski, M.A. Stroscio, Transport via the Liouville equation and moments of quantum distribution functions. Solid State Electron. 36, 1697 (1993)

    ADS  Google Scholar 

  • R. Sabry, W.M. Moslem, F. Haas, S. Ali, P.K. Shukla, Nonlinear structures: explosive, soliton and shock in a quantum electron–positron–ion magnetoplasma. Phys. Plasmas 15, 122308 (2008)

    ADS  Google Scholar 

  • P.K. Shukla, B. Eliasson, Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885 (2011)

    ADS  Google Scholar 

  • K.N. Stepanov, Theory of high frequency heating of plasma. Sov. Phys. JETP 8, 808 (1959)

    Google Scholar 

  • T.E. Stringer, Low-frequency waves in an unbounded plasma. J. Nucl. Energy Part C 5, 89 (1963)

    ADS  MATH  Google Scholar 

  • H. Ur-Rehman, S. Mahmood, S. Hussain, Magnetoacoustic nonlinear periodic (cnoidal) waves in plasmas. Phys. Plasmas 24, 012106 (2017)

    ADS  Google Scholar 

  • E. Witt, W. Lotko, Ion-acoustic solitary waves in a magnetized plasma with arbitrary electron equation of state. Phys. Fluids 26, 2176 (1983)

    ADS  MATH  Google Scholar 

  • V. Zakharov, E. Kuznetsov, Three-dimensional solitons. Sov. Phys. JETP 39, 285 (1974)

    ADS  Google Scholar 

Download references

Acknowledgements

F. H.  acknowledges the support by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Haas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Functions defined after collecting first and second order terms from perturbation theory

Appendix: Functions defined after collecting first and second order terms from perturbation theory

The functions \(f_{1}\) to \(f_{9}\) defined in the Eq. (116) are given as follows:

$$\begin{aligned} f_{1} =\frac{\partial n_{i1}}{\partial \tau }+\frac{\partial }{\partial \xi }\left( n_{i1}v_{ix1}\right) ,\quad f_{2}=\frac{\partial n_{e1}}{\partial \tau }+\frac{\partial }{\partial \xi }\left( n_{e1}v_{ex1}\right) , \end{aligned}$$
(a1)
$$\begin{aligned} f_{3} =\frac{\partial v_{ix1}}{\partial \tau }+v_{ix1}\frac{\partial }{\partial \xi }v_{ix1}-\Omega \text { }v_{iy1}B_{z1},\quad f_{4}=-v_{0}\frac{\partial v_{ix1}}{\partial \xi }+\Omega \text { }v_{ix1} B_{z1}, \end{aligned}$$
(a3)
$$\begin{aligned} f_{5} =\frac{\partial v_{ex1}}{\partial \tau }+v_{ex1}\frac{\partial }{\partial \xi }v_{ex1}+\delta \, \Omega \,v_{ey1}B_{z1}-\delta \, \alpha \, n_{e1}\frac{\partial n_{e1}}{\partial \xi }-\delta \, \frac{H^{2}}{4}\quad \frac{\partial ^{3}n_{e1}}{\partial \xi ^{3}}, \end{aligned}$$
(a5)
$$\begin{aligned} f_{6} =-v_{0}\frac{\partial v_{ey1}}{\partial \xi }+\Omega \,v_{ex1} B_{z1},\quad f_{7}=-\Omega \frac{\partial B_{z1}}{\partial \tau }, \end{aligned}$$
(a6)
$$\begin{aligned} f_{8} =\left( n_{e1}-n_{i1}\right) v_{ex1},\quad f_{9}=\frac{c_{\mathrm{s}}^{2} }{c^{2}}\left( n_{e1}v_{ey1}-n_{i1}v_{iy1}\right) . \end{aligned}$$
(a8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haas, F., Mahmood, S. Linear and nonlinear waves in quantum plasmas with arbitrary degeneracy of electrons. Rev. Mod. Plasma Phys. 6, 7 (2022). https://doi.org/10.1007/s41614-022-00068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-022-00068-2

Keywords

Navigation