Skip to main content
Log in

Dynamics of ion-acoustic waves in multi-species quantum plasmas with arbitrary degeneracy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The basic properties of ion-acoustic waves are studied in a nonrelativistic, unmagnetized quantum plasma consisting of positive and negative ions and Fermi–Dirac distributed electrons of arbitrary degeneracy. The formation of arbitrary amplitude oscillatory wave structures is investigated both analytically and numerically by employing pseudopotential formalism. The dispersion relation is derived to discuss the linear properties, whereas the nonlinear features of the ion-acoustic wave structures are scrutinized by formulating the dynamical system, then the concept of phase plane analysis, Poincaré map, and Lyapunov exponents are used to explore the system. The essential nonlinear characteristics of quantum ion-acoustic waves are found to have significant qualitative variation depending on the parameters like quantum diffraction(H), phase speed(M), etc. In the fully nonlinear regime, the considered plasma system exhibits some very important nonlinear structures like chaotic and hyper-chaotic trajectories. Irregular periodic oscillation is found to be present in subsonic\((M<1)\) region, whereas the ion-acoustic wave shows aperiodic nature in the supersonic\((M>1)\) region. In order to prove the existence of chaotic and hyper-chaotic trajectories, the notion of Lyapunov exponent is employed. The obtained results of this investigation cover the basic quantum effects in plasmas for both the high and low-temperature regimes which are reasonably fruitful for studying laser-produced plasmas in the laboratory as well as some high-density astrophysical plasma situations such as white dwarfs and neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. S Chandrasekhar Astrophys. J. 74 81 (1931)

  2. S Chandrasekhar Mon. Not. R. Astron. Soc. 95 207 (1935)

  3. D Koester and G Chanmugam Rep. Prog. Phys. 53 837 (1990)

  4. S L Shapiro and S A Teukolsky Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (New York: JohnWiley & Sons) (1983)

    Book  Google Scholar 

  5. E Garcia-Berro et al. Nature 465 194 (2010)

  6. M Akbari-Moghanjoughi Phys. Plasmas 19 042701 (2012)

  7. B Elliason and P K Shukla Phys. Plasmas 15 102102 (2008)

  8. F Hass and S Mahmood Phys. Rev. E 92 053112 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. B Sahu, B Pal and S Poria and R Roychowdhury J. Plasma. Phys 81 5 (2015)

  10. P Shome,B Sahu and S Poria Z Naturforsch. A 75 677 (2020)

  11. W F El-Taibany, A A Mamun and K H El-Shorbagy Adv Space Res. 50 101 (2012)

  12. M Mehdipoor and A Esfandyari-Kalejahi Astrophys. Space Sci. 342 93 (2012)

    Article  ADS  Google Scholar 

  13. U M Abdelsalam, W M Moslem and P K Shukla Phys. Lett. A 372 4057 (2008)

  14. H Saleem, J Vranjes and S Poedts Phys. Lett. A 350 375 (2006)

  15. B Boro, A N Dev, B K Saikia and N C Adhikary Eur. Phys. J. Plus 136 831 (2021)

  16. T Yeashna, R K Shikha and N A Chowdhury Eur. Phys. J. Plus 75 135 (2021)

  17. M Arham, S A Khan and M Khan Chin. J. Phys. 69 77 (2021)

  18. N M Heera, J Akter, N K Tamanna, N A Chowdhury, T I Rajib, S Sultana and A A Mamun AIP Adv. 11 055117 (2021)

  19. E E El-Shamy and M M Selim Waves Random Complex (2022) (Published Online)

  20. M K Islam, A A Noman, J Akter, N A Chowdhury, A Mannan, T S Roy, M Salahuddin and A A Mamun Cont . Plasma. Phys. 61 e202000214 (2021)

  21. A Merriche, M Benzekka and R Amour Z. Naturforsch. A 76 445 (2021)

  22. I L Cooney, M T Gavin, I Tao and K E Lonngren IEEE Trans. Plasma Sci. 19 1259 (1991)

  23. W M Moslem and P K Shukla Phys. Lett. A 362 463 (2007)

  24. F Haas, L G Garcia, J Goedert and G Manfredi Phys. Plasmas 10 3858 (2003)

  25. G Manfredi and F Haas Phys. Rev. B 64 075316 (2001)

  26. K P Shukla and S Ali Phys. Plasmas 12 114502 (2005)

    Article  ADS  Google Scholar 

  27. R Sabry W M Moslem and P K Shukla Phys. Lett. A 372 5691 (2008)

  28. U M Abdelsalam, W M Moslem and P K Shukla Phys. Plasmas 15 052303 (2008)

    Article  ADS  Google Scholar 

  29. A E Dubinov and A A Dubinova Plasma Phys. Rep. 33 859 (2007)

  30. S Mahmood and F Haas Phys. Plasmas 21 102308 (2014)

    Article  ADS  Google Scholar 

  31. D Shaikh and P K Shukla Phys. Rev. Lett. 99 125002 (2007)

    Article  ADS  Google Scholar 

  32. B Sahu and R Choudhury Phys. Plasmas 14 0123041 (2007)

    Google Scholar 

  33. J K Xue Phys. Plasmas 10 4893 (2003)

  34. S A Khan, W Masood and M Siddiq Phys. Plasmas 16 013701 (2009)

    Article  ADS  Google Scholar 

  35. M S Zobaer, N Roy and A A Mamun J. Plasma Phys. 79 65 (2013)

  36. M S Zobaer, N Roy and A A Mamun Astrophys. Space. Sci. 43 675 (2013)

  37. M S Zobaer, K N Mukta, L Nahar, N Roy and A A Mamun IEEE Trans. Plasma Sci. 41 1614 (2013)

  38. A Atteya, E E Behery and W F El-Taibany Eur. Phys. J. Plus 132 109 (2017)

  39. S K El-Labany W F El-Taibany and A Atteya Phys. Lett. A 382 412 (2018)

  40. U K Samanta, A Saha and P Chatterjee Phys. Plasmas 20 022111 (2013)

  41. M M Selim, A El-Depsy and E F El-Shamy Astrophys. Space Sci. 360 66 (2015)

  42. D T Patrice, A Mohamadou and T C Kofane Phys. Plasmas 24 123706 (2017)

  43. B Pal, S Poria and B Sahu Phys. Plasmas 22 042306 (2015)

  44. A Saha and P Chatterjee Astrophys. Space Sci. 353 163 (2014)

    Article  ADS  Google Scholar 

  45. R Ali, A Saha and P Chatterjee Phys. Plasmas 24 122106 (2017)

  46. R Ali, A Saha and P Chatterjee Indian J. Phys. 91 689 (2017)

  47. A Saha and P Chatterjee Eur. Phys. J. D 69 203 (2015)

    Article  ADS  Google Scholar 

  48. A Saha and P Chatterjee Braz. J. Phys. 45 419 (2015)

  49. A Saha and P Chatterjee Eur. Phys. J. Plus 130 222 (2015)

  50. T K Das, A Saha, N Pal and P Chatterjee Phys. Plasmas 24 073707 (2017)

  51. T K Das, R Ali and P Chatterjee Phys. Plasmas 24 103703 (2017)

  52. M Hafez Astrophys. Space Sci. 365 78 (2020)

  53. A Saha, P Prasad and S Banerjee Astrophys. Space Sci. 364 180 (2019)

  54. B Yan, P Prasad, S Mukherjee, A Saha and S Banerjee Complexity (2020)

  55. P Prasad, A Gowrisankar, A Saha and S Banerjee Phys. Scr. 95 065603 (2020)

  56. P Prasad, S Sarkar and A Saha and K Mondal Braz. J. Phys. 49 698 (2019)

  57. A Abdikian, A Saha and S Alimirzaei J. Taibah Univ. Sci. 14 1051 (2020)

  58. S Hussain, A Mushtaq and S Mahmood Phys. Scr. 87 025502 (2013)

  59. P Chatterjee, K Roy, S V Muniandy, S L Yap and C S Wong Phys. Plasmas 16 042311 (2009)

    Article  ADS  Google Scholar 

  60. M J Lee, M Shahmansouri and Y D Jung Europhys. Lett. 127 35001 (2019)

  61. M Shahmansouri, M J Lee, N Khoddam and Y D Jung Phys. Scr. 95 015605 (2020)

  62. F Haas and S Mahmood Phys. Rev. E 97 063206 (2018)

    Article  ADS  Google Scholar 

  63. M Shahmansouri, H Alinejad and M Tribeche J. Plasma. Phys. 83 905830303 (2017)

  64. J Tamang, A Abdikian and A Saha Phys. Scr. 95 105604 (2020)

  65. A Abdikian, J Tamang and A Saha Waves Random Complex (2021) (Published Online)

  66. A Abdikian, J Tamang and A Saha Phys. Scr. 96 095605 (2021)

  67. A Abdikian and S Sultana Phys. Scr. 96 095602 (2021)

    Article  ADS  Google Scholar 

  68. L Mandi, A Saha and P Chatterjee Adv. Space. Res. 64 427 (2019)

Download references

Acknowledgements

Debaditya Kolay and Dr.Debjit Dutta are grateful to the Council of Scientific and Industrial Research, Department of Science and Technology, Govt. of India, for funding this research (CSIR Project Number - 03(1471)/19/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debjit Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolay, D., Dutta, D. & Saha, A. Dynamics of ion-acoustic waves in multi-species quantum plasmas with arbitrary degeneracy. Indian J Phys 97, 4465–4479 (2023). https://doi.org/10.1007/s12648-023-02769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02769-x

Keywords

Navigation