Skip to main content
Log in

Review of heavy-nucleus-acoustic nonlinear structures in cold degenerate plasmas

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Ultra-dense degenerate quantum plasma is an omnipresent ingredient in astrophysical compact objects (viz., neutron stars, white dwarfs, black holes, etc.) as well as in the plasma produced laboratory devices (viz., quantum diodes, quantum dots, quantum free electron lasers, thin metal film, etc.). These ultradense plasmas in astrophysical environments are assumed to be composed of non-relativistically non-degenerate heavy nuclei (viz., \(_{26}^{56}Fe\) or \(_{37}^{85}Rd\) or \(_{42}^{96}Mo\), etc.), non-relativistically degenerate light nuclei (viz. \(_1^1H\) or \(_2^4He\) or \(_6^{12}C\) or \(_8^{16}O\), etc.), and relativistically degenerate electron gas. The nonlinear features of different collective modes (such as solitary waves, shock waves as well as envelope solitons and rogue waves) associated with the dynamics of the heavy-nucleus species in such extremely dense quantum plasmas are presented. The plasma fluid model, which describes the dynamics of heavy-nucleus-acoustic waves, is governed by set of hydrodynamical equations consisting of continuity and momentum equation for the heavy-nucleus fluid along with the Poisson equation for the net charge densities of inertialess degenerate electron and light nucleus species as well as inertial heavy-nucleus species. The degeneracy effects of the electron and light nucleus species, which arise due to Heisenberg’s uncertainty principle, on the nonlinear characteristics of small as well as arbitrary amplitude heavy nucleus-acoustic waves are rigorously analyzed by employing different standard mathematical methods. The influence of different key plasma parameters, especially the number densities of degenerate electron, light nucleus, and heavy-nucleus species on the propagation properties of different nonlinear waves (viz., solitons, shocks, envelope modes, and rogue waves), is discussed. The results should be useful in better understanding the properties of different localized nonlinear structures in multi-component cold degenerate quantum plasmas which are exist in astrophysical compact objects (e.g., white dwarfs, neutron stars, etc.) and in high-density plasma experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • A. Abdikian, S. Mahmood, Phys. Plasmas 23, 122303 (2016)

    ADS  Google Scholar 

  • A. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)

    ADS  Google Scholar 

  • M.S. Alam, M.G. Hafez, M.R. Talukder, M. Hossain, Chin. Phys. B 26, 095203 (2017)

    ADS  Google Scholar 

  • W. Albalawi, R. Jahangir, W. Masood, S.A. Alkhateeb, S.A. El-Tantawy, Symmetry 13(11), 2029 (2021)

    ADS  Google Scholar 

  • H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

    ADS  Google Scholar 

  • S.D. Bale, M.A. Balikhin, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, E. Möbius, S.N. Walker, A. Balogh, D. Burgess, B. Lembeǵe, E.A. Lucek, M. Scholer, S.J. Schwartz, M.F. Thomsen, Space Sci. Rev. 118, 161 (2005)

    ADS  Google Scholar 

  • T.B. Benjamin, J.E. Feir, Theory. J. Fluid Mech. 27, 417 (1967)

    ADS  Google Scholar 

  • A. Chabchoub, N.P. Hoffmann, N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011)

    ADS  Google Scholar 

  • A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Phys. Rev. X 2, 011015 (2012)

    Google Scholar 

  • G. Chabrier, Plasma Phys. Control. Fusion 51, 124014 (2009)

    ADS  Google Scholar 

  • G. Chabrier, D. Saumon, A.Y. Potekhin, J. Phys. A: Math. Gen. 39, 4411 (2006)

    ADS  Google Scholar 

  • S. Chandra, B. Ghosh, Astrophys. Space Sci. 342, 417 (2012)

    ADS  Google Scholar 

  • S. Chandrasekhar, Philos. Magn. (suppl.) 11, 592 (1931)

    Google Scholar 

  • S. Chandrasekhar, Astrophys. J. 74, 81 (1931)

    ADS  Google Scholar 

  • S. Chandrasekhar, Mon. Not. R. Astron. Soc. 170, 405 (1935)

    Google Scholar 

  • S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York, 1939), p. 412

    MATH  Google Scholar 

  • S. Chandrasekhar, Phys. Rev. Lett. 12, 114 (1964)

    ADS  MathSciNet  Google Scholar 

  • S. Chandrasekhar, R.F. Tooper, Astrophys. J. 139, 1396 (1964)

    ADS  Google Scholar 

  • N.A. Chowdhury, A. Mannan, A.A. Mamun, Phys. Plasmas 24, 113701 (2017)

    ADS  Google Scholar 

  • S.E. Cousens, V.V. Yaroshenko, S. Sultana, M.A. Hellberg, F. Verheest, I. Kourakis, Phys. Rev. E 89, 043103 (2014)

    ADS  Google Scholar 

  • T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  • R.P. Drake, Phys. Plasmas 16, 055501 (2009)

    ADS  Google Scholar 

  • R.P. Drake, Phys. Today 63(6), 28 (2010)

    MathSciNet  Google Scholar 

  • A.E. Dubinov, A.A. Dubinova, Plasma Phys. Rep. 33, 859 (2007)

    ADS  Google Scholar 

  • J.M. Dudley, F. Dias, M. Erkintalo, G. Genty, Nat. Photon. 8, 755 (2014)

    ADS  Google Scholar 

  • V.B. Efimov, A.N. Ganshin, G.V. Kolmakov, P.V.E. McClintock, L.P. Mezhov-Deglin, Eur. Phys. J. Spec. Top. 185, 181 (2010)

    Google Scholar 

  • S.K. El-Labany, W.F. El-Taibany, A.E. El-Samahy, A.M. Hafez, A. Atteya, IEEE Trans. Plasma Sci. 44, 842 (2016)

    ADS  Google Scholar 

  • R. Fedele, Phys. Scr. 65, 502 (2002)

    ADS  Google Scholar 

  • R. Fedele, H. Schamel, Eur. Phys. J. B 27, 313 (2002)

    ADS  Google Scholar 

  • R. Fedele, H. Schamel, P.K. Shukla, Phys. Scr. T. 98, 18 (2002)

    ADS  Google Scholar 

  • R.S. Fletcher, X.L. Zhang, S.L. Rolston, Phys. Rev. Lett. 96, 105003 (2006)

    ADS  Google Scholar 

  • V.E. Fortov, Phys. Usp. 52, 615 (2009)

    ADS  Google Scholar 

  • V.E. Fortov, D.H.H. Hoffmann, B. Yu Sharkov, Usp. Fiz. Nauk 178, 113 (2008)

    Google Scholar 

  • V.E. Fortov, D.H.H. Hoffmann, B. Yu Sharkov, Phys. Usp. 51, 109 (2008)

    ADS  Google Scholar 

  • V.E. Fortov, I. Iakubov, A. Khrapak, A Physics of Strongly Coupled Plasma (Oxford Univ. Press, Oxford, 2006)

    MATH  Google Scholar 

  • R.H. Fowler, J. Astrophys. Astr. 15, 115 (1994)

    Google Scholar 

  • D.H. Froula, S.H. Glenzer, N.C. Luhmann Jr., J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques, 2nd edn. (Academic Press, New York, 2011)

    Google Scholar 

  • E. Garcia-Berro, S. Torres, L.G. Althaus, I. Renedo, P. Loren-Aguiltar, A.H. Corsico, R.D. Rohrmann, M. Salaris, J. Isern, Nature (London) 465, 194 (2010)

    ADS  Google Scholar 

  • S.H. Glenzer, R. Redmer, Rev. Mod. Phys. 81, 1625 (2009)

    ADS  Google Scholar 

  • J.T. Gosling, J.R. Asbridge, S.J. Bame, G. Paschmann, N. Sckopke, Geophys. Res. Lett. 5, 957 (1978)

    ADS  Google Scholar 

  • T. Guillot, Science 286, 72 (2009)

    ADS  Google Scholar 

  • H. Gursky, in Frontiers of Astrophysics. Chap. 5. ed. by E.H. Avrett (Harvard University Press, Cambridge, Massachussets, 1976), pp. 152–153

    Google Scholar 

  • A.K. Harding, D. Lai, Rep. Prog. Phys. 69, 2631 (2006)

    ADS  Google Scholar 

  • H. Heinrich, S.-H. Kim, R.L. Merlino, Phys. Rev. Lett. 103, 115002 (2009)

    ADS  Google Scholar 

  • R. Hirota, Phys. Rev. Lett. 27(18), 1192 (1971)

    ADS  Google Scholar 

  • P.R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  • H.M. Van Horn, Science 252, 384 (1991)

    ADS  Google Scholar 

  • M.R. Hossen, A.A. Mamun, Br. J. Phys. 44, 673–681 (2014)

    ADS  Google Scholar 

  • M.A. Hossen, A.A. Mamun, Phys. Plasmas 22, 102710 (2015)

    ADS  Google Scholar 

  • M.R. Hossen, L. Nahar, S. Sultana, A.A. Mamun, High Energy Density Phys. 13, 13 (2014)

    ADS  Google Scholar 

  • M.R. Hossen, L. Nahar, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 353, 123–130 (2014)

    ADS  Google Scholar 

  • S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    ADS  Google Scholar 

  • S. Islam, S. Sultana, A.A. Mamun, Phys. Plasmas 24, 092308 (2017)

    ADS  Google Scholar 

  • S.W. Kahler, J.C. Raymond, J.M. Laming, AIP Conf. Proc., vol. 471 (AIP, Woodbury, New York, 1999), p. 685

    Google Scholar 

  • R. Kaur, K. Singh, N.S. Saini, Chin. J. Phys. 72, 279–286 (2021)

    Google Scholar 

  • M.M. Kerr, F. Haas, I. Kourakis, Phys. Plasmas 23, 052120 (2016)

    ADS  Google Scholar 

  • B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, Nat. Phys. 6, 790 (2010)

    Google Scholar 

  • T.C. Killian, Nature (London) 441, 297 (2006)

    ADS  Google Scholar 

  • D. Koester, Astron. Astrophys. Rev. 11, 33 (2002)

    ADS  Google Scholar 

  • D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837–915 (1990)

    ADS  Google Scholar 

  • I. Kourakis, P.K. Shukla, Nonlinear Proc. Geophys. 12, 407 (2005)

    ADS  Google Scholar 

  • R.M. Kulsrud, J.P. Ostriker, J.E. Gunn, Phys. Rev. Lett. 28, 636 (1972)

    ADS  Google Scholar 

  • D. Lai, Rev. Mod. Phys. 73, 629 (2001)

    ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Butterworth-Heinemann, Oxford, 1998)

    MATH  Google Scholar 

  • H.J. Lee, P. Neumayer, J. Castor et al., Phys. Rev. Lett. 102, 115001 (2009)

    ADS  Google Scholar 

  • E. Lee, G.K. Parks, M. Wilbr, N. Lin, Phys. Rev. Lett. 103, 031101 (2009)

    ADS  Google Scholar 

  • M. Andre, Conceptual Design of the French LMJ Laser, 39 (1999)

  • A.A. Mamun, Phys. Plasmas 24, 102306 (1997)

    ADS  Google Scholar 

  • A.A. Mamun, Phys. Rev. E 55, 1852 (1997)

    ADS  Google Scholar 

  • A.A. Mamun, Phys. Script. 58, 505 (1998)

    ADS  Google Scholar 

  • A.A. Mamun, M. Amina, R. Schlickeiser, Phys. Plasmas 23, 094503 (2016)

    ADS  Google Scholar 

  • A.A. Mamun, M. Amina, R. Schlickeiser, Phys. Plasmas 24, 042307 (2017)

    ADS  Google Scholar 

  • A.A. Mamun, P.K. Shukla, Phys. Lett. A 374, 4238 (2010)

    ADS  Google Scholar 

  • A. Mannan, S. Sultana, A.A. Mamun, IEEE Trans. Plasma Sci. 48, 4093–4102 (2020)

    ADS  Google Scholar 

  • K.G. McClements, M.E. Dieckmann, A. Ynnerman, S.C. Chapman, R.O. Dendy, Phys. Rev. Lett. 87, 255002 (2001)

    ADS  Google Scholar 

  • V.B. Mintsev, V.E. Fortov, J. Phys. A: Math. Gen. 39, 4319 (2006)

    ADS  Google Scholar 

  • Y. Nakamura, H. Bailung, P.K. Shukla, Phys. Rev. Lett. 83, 1602 (1999)

    ADS  Google Scholar 

  • A.R. Osborne, M. Onorato, M. Serio, Phys. Lett. A 275, 386 (2000)

    ADS  MathSciNet  Google Scholar 

  • J. Pasley, I.A. Bush, A.P.L. Robinson, P.P. Rajeev, S. Mondal, A.D. Lad, S. Ahmed, V. Narayanan, G.R. Kumar, R.J. Kingham, Nukleonika 60(2), 193 (2015)

    Google Scholar 

  • D.H. Peregrine, Aust. Math. Soc. Ser. B 25, 16 (1983)

    Google Scholar 

  • A.Y. Potekhin, D.A. Baiko, P. Haensel, D.G. Yakovlev, Astron. Astrophys. 346, 345 (1999)

    ADS  Google Scholar 

  • R. Pottelette, R.E. Ergun, R.A. Treumann, M. Berthornier, C.W. Carlson, J.P. McFadden, I. Roth, Geophys. Res. Lett. 26, 2629 (1999)

    ADS  Google Scholar 

  • Z. Qin, G. Mu, Phys. Rev. E 86, 036601 (2012)

    ADS  Google Scholar 

  • R.Z. Sagdeev, Cooperative phenomena and shock waves in collisionless plasmas, in Reviews of Plasma Physics, vol. 4, ed. by M.A. Leontovich (Consultants Bureau, New York, 1966), pp. 23–91. Rev. Mod. Phys. 4, 23 (1966)

  • A. Rahman, S. Ali, Astrophys. Space Sci. 351, 165 (2014)

    ADS  Google Scholar 

  • A.U. Rahman, M.M. Kerr, W.F. El-Taibany, I. Kourakis, A. Qamar, Phys. Plasmas 22, 022305 (2015)

    ADS  Google Scholar 

  • J.C. Raymond, B.J. Thompson, O.C St. Cyr, Nat Gopalswamy, S. Kahler, M. Kaiser, A. Lara, A. Ciaravella, M. Romoli, R. O’Neal, Geophys. Res. Lett. 27, 1439 (2000)

    ADS  Google Scholar 

  • N. Roy, S. Tasnim, A.A. Mamun, Phys. Plasmas 19, 033705 (2012)

    ADS  Google Scholar 

  • E.E. Salpeter, Astrophys. J. 134, 669 (1961)

    ADS  MathSciNet  Google Scholar 

  • M.G. Shah, M.R. Hossen, A.A. Mamun, Br. J. Phys. 45(2), 219 (2015)

    ADS  Google Scholar 

  • Shalini, N.S. Saini, A.P. Misra, Phys. Plasmas 22, 092124 (2015)

    ADS  Google Scholar 

  • S.L. Shapiro, A.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983)

    Google Scholar 

  • S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley-VCH Verlag, Weinheim, 2004)

    Google Scholar 

  • P.K. Shukla, B. Eliasson, Phys. Usp. 53, 51 (2010)

    ADS  Google Scholar 

  • P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011)

    ADS  Google Scholar 

  • P.K. Shukla, A.A. Mamun, D.A. Mendis, Phys. Rev. E 84, 026405 (2011)

    ADS  Google Scholar 

  • D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)

    ADS  Google Scholar 

  • S. Sultana, S. Islam, A.A. Mamun, Astrophys. Space Sci. 351, 581 (2014)

    ADS  Google Scholar 

  • S. Sultana, S. Islam, A.A. Mamun, R. Schlickeiser, Phys. Plasmas 25, 012113 (2018)

    ADS  Google Scholar 

  • S. Sultana, I. Kourakis, Plasma Phys. Control. Fusion 53, 045003 (2011)

    ADS  Google Scholar 

  • S. Sultana, I. Kourakis, M.A. Hellberg, Plasma Phys. Control. Fusion 54, 105016 (2012)

    ADS  Google Scholar 

  • S. Sultana, I. Kourakis, N.S. Saini, M.A. Hellberg, Phys. Plasmas 17, 032310 (2010)

    ADS  Google Scholar 

  • S. Sultana, G. Sarri, I. Kourakis, Phys. Plasmas 19, 012310 (2012)

    ADS  Google Scholar 

  • S. Sultana, R. Schlickeiser, Astrophys. Space Sci. 363(103), 1–9 (2018)

    Google Scholar 

  • T. Takeuchi, S. Lizuka, N. Sato, Phys. Rev. Lett. 80, 77 (1998)

    ADS  Google Scholar 

  • Y. Uchiyama, F.A. Aharonian, T. Tanaka, T. Takahashi, Y. Maeda, Nature (London) 449, 576 (2007)

    ADS  Google Scholar 

  • A. Vanderburg, J.A. Johnson, S. Rappaport, A. Bieryla, J. Irwin, J.A. Lewis, D. Kipping, W.R. Brown, P. Dufour, D.R. Ciardi, R. Angus, L. Schaefer, D.W. Latham, D. Charbonneau, C. Beichman, J. Eastman, N. McCrady, R.A. Wittenmyer, J.T. Wright, Nature 526, 546 (2015)

    ADS  Google Scholar 

  • F. Verheest, Phys. Plasmas 17, 062302 (2010)

    ADS  Google Scholar 

  • F. Verheest, M.A. Hellberg, Phys. Plasmas 17, 023701 (2010)

    ADS  Google Scholar 

  • W. Wan, S. Jia, J.W. Fleischer, Nat. Phys. 3, 46 (2007)

    Google Scholar 

  • H. Washimi, T. Taniuti, Phys. Rev. Lett. 17, 996 (1966)

    ADS  Google Scholar 

  • A. Witze, Nature 510, 196 (2014)

    ADS  Google Scholar 

  • Y.P. Zakharov, IEEE Trans. Plasma Sci. 31, 1243 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Professor R. Schlickeiser (Ruhr-Universität Bochum, Germany) and Professor A A Mamun (Jahangirnagar University, Bangladesh) for their invaluable suggestions during writing this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmin Sultana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, S. Review of heavy-nucleus-acoustic nonlinear structures in cold degenerate plasmas. Rev. Mod. Plasma Phys. 6, 6 (2022). https://doi.org/10.1007/s41614-022-00067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-022-00067-3

Keywords

Navigation