Skip to main content
Log in

Wave-particle interactions in quantum plasmas

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Wave-particle interaction (WPI) is one of the most fundamental processes in plasma physics in which one most prominent example is the Landau damping. Owing to its excellent energy-exchange mechanism, the WPI has gained increasing interest not only from theoretical points of view, but also its many important applications including plasma heating and plasma acceleration. In this review work, we present theoretical backgrounds of linear and nonlinear wave-particle interactions in quantum plasmas. Specifically, we focus on the wave-particle interactions for homogeneous plasma waves (i.e., waves with infinite extent rather than a localized pulse) as well as for propagating electrostatic waves in the weak and strong quantum regimes to demonstrate the modifications of several classical features including those associated with resonant and trapped particles. Finally, the future perspectives of WPI in quantum plasmas are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Zamanian et al. (2010) by permission of IOP Publishing. CC BY-NC-SA

Fig. 2
Fig. 3
Fig. 4

Reprinted from Chatterjee and Misra (2016), with the permission of AIP Publishing

Fig. 5

Reprinted from Ref. Misra et al. (2021), with the permission of AIP Publishing

Fig. 6

Reprinted from Ref. Barman and Misra (2017), with the permission of AIP Publishing

Fig. 7

Reprinted from Ref. Chatterjee and Misra (2016), with the permission of AIP Publishing

Fig. 8

Reprinted the figure with permission from Ref. Misra et al. (2017), Copyright (2017) by the American Physical Society

Fig. 9

Reprinted the figure with permission from Ref. Misra et al. (2017), Copyright (2017) by the American Physical Society

Fig. 10

Reprinted the figure with permission from Ref. Misra et al. (2017), Copyright 2017 by the American Physical Society

Fig. 11

Reprinted the figure with permission from Ref. Misra et al. (2017), Copyright (2017) by the American Physical Society

Similar content being viewed by others

References

Download references

Acknowledgements

One of us (APM) acknowledges support from Science and Engineering Research Board (SERB), Government of India, for a research project (under Core Research Grant) with sanction order no. CRG/2018/004475. The authors thank the anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar P. Misra.

Ethics declarations

Conflict of interest statement

The authors have no actual or potential conflicts of interest to declare in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Expressions for \(A,~A_1,~B\) and C in \(\gamma\)

$$\begin{aligned} A=-\frac{16\pi e^3}{ A_0m^2k^3}{\int _C \frac{(v_p-v)\left[ (v_p-v)^2+ \frac{v_q^2}{2}\right] }{\left\{ (v_p-v)^2-v_q^2\right\} ^2 \left\{ \left( v_p-v+v_q \right) ^2-v_q^2\right\} \left\{ \left( v_p-v- v_q\right) ^2-v_q^2\right\} } F^{(0)}(v)\mathrm{d}v}, \end{aligned}$$
(167)

where

$$\begin{aligned} A_0={1-\frac{\pi e^2}{k^2m}\int _C \frac{F^{(0)}(v)}{(v_p-v)^2-\left( 2v_q \right) ^2 }}\mathrm{d}v. \end{aligned}$$
(168)

Also,

$$\begin{aligned}&A_1=-{12\pi e^3}\frac{\hbar }{k^2 m^2}\left[ \int _C \frac{1}{\left\{ \left( v_p-v+v_q\right) ^2-4v_q^2 \right\} \left\{ \left( v_p-v-v_q\right) ^2- 4v_q^2\right\} \mathrm{d}v }\right. \\&\quad \left. + \frac{3}{2}\int _C \frac{\left[ (v_p-v)^2+v_q^2\right] }{\left\{ (v_p-v)^2-4v_q^2\right\} \left\{ \left( v_p-v+2v_q\right) ^2-v_q^2\right\} \left\{ \left( v_p-v-2v_q\right) ^2- v_q^2\right\} }\right] F^{(0)}(v)dv,\\&B=\frac{4\pi e^4}{k^4 m}\int _C \left[ \frac{1}{\left\{ v_p-v+2v_q\right\} \left\{ v_p-v+v_q\right\} \left\{ \left( v_p-v+2v_q \right) ^2-v_q^2\right\} } \right. \\&\quad \left. +\frac{1}{\left\{ v_p-v-2v_q\right\} \left\{ v_p-v-v_q\right\} \left\{ \left( v_p-v-2v_q\right) ^2-v_q^2 \right\} }\right. \\&\quad \left. - \frac{2}{\left\{ (v_p-v)^2-v_q^2 \right\} ^2 }\right] F^{(0)}(v)\mathrm{d}v, \\&C(k,\omega ; v_g)=-\frac{4\pi e^4}{m \hbar ^2 k^2} \int _C \frac{1}{(v_p-v)^2-v_q^2} \frac{I(v)}{v-v_g}\mathrm{d}v \\&\quad =-\frac{4\pi e^4}{m \hbar ^2 k^4} \int _C \left[ \frac{v-v_g-v_q}{\left\{ \left( v_p-v+2v_q\right) ^2-v_q^2\right\} \left( v_p-v+v_q\right) ^2 \left( v-v_g-2v_q\right) } \right. \\&\quad \left. - \frac{v-v_g+ v_q}{\left\{ \left( v_p-v-2v_q\right) ^2-v_q^2\right\} \left( v_p-v-v_q \right) ^2 \left( v-v_g + 2v_q\right) } \right. \\&\quad \left. -2v_q \frac{ \left\{ \left( v_p-v\right) ^2+v_q^2 \right\} }{(v-v_g)\left\{ \left( v_p-v\right) ^2-v_q^2 \right\} ^3 }-4v_q\frac{v_p-v}{\left\{ \left( v_p-v\right) ^2-v_q^2 \right\} ^3}\right] F^{(0)}(v)\mathrm{d}v, \end{aligned}$$

where

$$\begin{aligned} I(v)= \frac{1}{k^2}\left[ \left( v-v_g+v_q \right) \frac{f^{(0)}\left( v+2v_q\right) -f^{(0)}(v)}{{\left\{ v_p-\left( v+v_q \right) \right\} }^2} +\left( v-v_g-v_q \right) \frac{f^{(0)}(v)-f^{(0)}\left( v-2v_q\right) }{{ \left\{ v_p-\left( v-v_q \right) \right\} }^2}\right] . \end{aligned}$$
(169)

Appendix 2. Reduced expressions for \(\alpha ,~\beta ,~\gamma\) and D with the Fermi distribution at zero temperature

$$\begin{aligned}&\alpha =-\frac{8m \omega _{\rm p}^2}{3\hbar k^2 v_{\rm F}^3} \sum _{j=\pm 1} \left( v_p+jv_q \right) \log \left| \frac{v_p+jv_q-v_{\rm F}}{v_p+jv_q+v_{\rm F}}\right| , \end{aligned}$$
(170)
$$\begin{aligned}&\beta =1-\frac{3 m \omega _{\rm p}^2}{2 \hbar k^3 v_{\rm F}^2} \sum _{j=\pm 1}\left[ \left\{ 2\left( v_p+jv_q \right) +\left( v_p-v_g\right) \right\} \log \left| \frac{v_p+jv_q-v_{\rm F}}{v_p+jv_q+v_{\rm F}}\right| \right. \nonumber \\&\quad \left. -\left\{ v_{\rm F}^2-\left( v_p+jv_q \right) ^2-2\left( v_p+jv_q \right) \left( v_p-v_g\right) \right\} \frac{v_{\rm F}}{ v_{\rm F}^2- \left( v_P+jv_q \right) ^2} +\left( v_p-v_g \right) \frac{v_{\rm F} \left( v_p+jv_q \right) }{ v_{\rm F}^2-\left( v_p+jv_q \right) ^2}\right] , \end{aligned}$$
(171)
$$\begin{aligned}&\gamma =\left( \frac{1}{4}\frac{A A_1}{\hbar }-\frac{1}{2\hbar ^2}B+C\right) k^2, \end{aligned}$$
(172)

where

$$\begin{aligned} \begin{aligned}&A= - \frac{4em^2 \omega _{\rm p}^2}{A_0\hbar ^3 k^6 v_{\rm F}^3}\sum _{j=\pm 1}\left[ kv_{\rm F}v_q +\frac{\omega _{\rm p}}{6v_q} \left\{ \left( v_{\rm F}^2-\left( v_p+jv_q \right) ^2 \right) \left( 4-\frac{jk v_q}{2 \omega _{\rm p}} \right) \right. \right. \\&\quad \left. \left. -6v_q\left( v_p+jv_q \right) \left( 1-\frac{j k v_q}{ 2 \omega _{\rm p}} \right) \right\} \log \left| \frac{v_p+jv_q-v_{\rm F}}{ v_p+jv_q+v_{\rm F}}\right| \right. \\&\quad \left. +\frac{\omega _{\rm p}}{3 v_q} \left\{ v_{\rm F}^2-\left( v_p+j2v_q \right) ^2 \right\} \left( 1-\frac{jk v_q}{4\omega _{\rm p}} \right) \log \left| \frac{v_p+j2v_q-v_{\rm F}}{v_p+j2v_q+v_{\rm F}}\right| \right. \\&\quad \left. +i \pi v_q \omega _{\rm p} \left\{ v_{\rm F}^2-\left( v_p-2v_q \right) ^2 \right\} \left( 1+\frac{k v_q}{4\omega _{\rm p}} \right) \right] , \end{aligned} \end{aligned}$$
(173)

with

$$\begin{aligned} \begin{aligned}&A_0=1-\frac{3\omega _{\rm p}^2}{16 v_{\rm F}^2 k^2}\left[ 2-\sum _{j=\pm 1}\frac{jv_q}{ 4 v_{\rm F}}\left\{ v_{\rm F}^2-\left( v_p+jv_q\right) ^2 \right\} \log \left| \frac{v_p+j2v_q-v_{\rm F}}{v_p+j2v_q+v_{\rm F}}\right| \right] \\&\quad -i\frac{3\pi \omega _{\rm p}^2}{64 v_{\rm F}^3 v_q k^2}\left\{ v_{\rm F}^2-\left( v_p-2v_q \right) ^2 \right\} . \end{aligned} \end{aligned}$$
(174)

Also,

$$\begin{aligned} \begin{aligned}&A_1=-\frac{e}{m}\frac{9\omega _{\rm p}^2 m^3}{4\hbar ^2 v_{\rm F}^3k^5} \sum _{j=\pm 1} \left[ \frac{j}{4}\left\{ v_{\rm F}^2-\left( v_p+jv_q\right) ^2 \right\} \log \left| \frac{v_p+jv_q-v_{\rm F}}{v_p+jv_q+v_{\rm F}}\right| \right. \\&\quad \left. - \frac{2j}{3}\left\{ v_{\rm F}^2-\left( v_p+j3v_q \right) ^2 \right\} \log \left| \frac{v_p+j3v_q-v_{\rm F}}{v_p+j3v_q+v_{\rm F}}\right| +j\left\{ v_{\rm F}^2-\left( v_p+j2v_q \right) ^2 \right\} \log \left| \frac{v_p+j2v_q-v_{\rm F}}{v_p+j2v_q+v_{\rm F}}\right| \right] \\&\quad -i\frac{9\pi \omega _{\rm p}^2}{16v_{\rm F}^3k^3}\frac{e }{v_q^2}\left[ \frac{2}{3} \left\{ v_{\rm F}^2-\left( v_p-3v_q \right) ^2 \right\} -\left\{ v_{\rm F}^2-\left( v_p-2v_q \right) ^2 \right\} \right] , \end{aligned} \end{aligned}$$
(175)
$$\begin{aligned} \begin{aligned}&B=-\frac{e^2}{k^7}\frac{3\omega _{\rm p}^2m^3}{2v_{\rm F}^3\hbar ^3}\sum _{j=\pm 1}\left[ 16 v_{\rm F} v_q+4\left\{ v_{\rm F}^2-\left( v_p+j2v_q\right) ^2 \right\} \log \left| \frac{v_p+j2v_q-v_{\rm F}}{v_p+j2v_q+v_{\rm F}} \right| \right. \\&\quad \left. +\left\{ v_{\rm F}^2-\left( v_p+j3v_q\right) ^2 \right\} \log \left| \frac{v_p+j3v_q-v_{\rm F}}{v_p+j3v_q+v_{\rm F}}\right| -\left\{ v_{\rm F}^2-\left( v_p+jv_q \right) ^2 -8j v_q\left( v_p+jv_q\right) \right\} \log \left| \frac{v_p+jv_q-v_{\rm F}}{v_p+jv_q+v_{\rm F}}\right| \right] \\&\quad -i \frac{3 \pi e^2 \omega _{\rm p}^2}{4 k^4 v_{\rm F}^3}\left[ -\frac{1}{ v_q^3} \left\{ v_{\rm F}^2-\left( v_p-2v_q\right) ^2 \right\} + \frac{1}{ 4 v_q^3}\left\{ v_{\rm F}^2-\left( v_p-3v_q \right) ^2 \right\} \right] , \end{aligned} \end{aligned}$$
(176)
$$\begin{aligned} \begin{aligned}&C=-\frac{3}{4} \frac{e^2}{\hbar ^2 k^4}\frac{\omega _{\rm p}^2}{v_{\rm F}^3} \sum _{j=\pm 1} \left[ -\frac{1}{8 v_q^3} \frac{v_p+j2v_q-v_g}{ v_p+jv_q-v_g} \left\{ v_{\rm F}^2-\left( v_p+j3v_q \right) ^2 \right\} \log \left| \frac{v_p+j3v_q-v_{\rm F}}{v_p+j3v_q+v_{\rm F}}\right| +jM_j \log \left| \frac{v_p+jv_q-v_{\rm F}}{v_p+jv_q+v_{\rm F}}\right| \right. \\&\quad \left. +jN_j \frac{2v_{\rm F}}{v_{\rm F}^2-\left( v_p+jv_q \right) ^2 } -\left( \frac{1}{ 2 v_q} \frac{v_p-v_g}{v_p-jv_q-v_g} -\frac{1}{2} \frac{1}{ v_p+jv_q-v_g}-\frac{1}{2 v_q}\right) \frac{2v_{\rm F}\left( v_p+jv_q \right) }{v_{\rm F}^2-\left( v_p+jv_q\right) ^2 }\right. \\&\quad \left. -v_q \frac{v_{\rm F}^2-\left( v_g +jv_q\right) ^2 }{\left( v_p-jv_q- v_g \right) ^3 \left( v_p+jv_q-v_g\right) }\log \left| \frac{ v_g +jv_q-v_{\rm F}}{v_g+jv_q+v_{\rm F}}\right| +\frac{2v_q}{k^2} \frac{ \left\{ \left( \omega -k v_g\right) ^2 +\frac{\hbar ^2 k^4}{4m^2} \right\} \left( v_{\rm F}^2-v_g^2\right) }{\left( v_p+v_q-v_g \right) ^3 \left( v_p-v_q-v_g\right) ^3} log \frac{v_g-v_{\rm F}}{v_g+v_{\rm F}}\right] , \end{aligned} \end{aligned}$$
(177)

with

$$\begin{aligned} \begin{aligned}&M_{1,-1}= \frac{1}{4v_q^2 \left( v_p-v_g\mp 2v_q \right) ^2 }\left[ \left( v_p-v_g\mp 3v_q \right) \left\{ v_{\rm F}^2-3\left( v_p\pm v_q\right) ^2+2\left( v_g\pm v_q \right) \left( v_p\pm v_q\right) \right\} \right. \\&\quad \left. \mp 4v_q\left( v_p-v_g\mp v_q \right) \left( 3v_p-v_g\pm 2v_q \right) -2 \left( v_p\pm v_q \right) \left( v_p-v_g\right) \left( v_p-v_g\mp 3v_q \right) \right. \\&\quad \left. +\left\{ 2\left( v_p-v_g\mp v_q \right) +\left( v_p-v_g\mp 3v_q \right) \pm 2\left( v_q-v_g \right) \left( v_q-v_g\mp 3v_q \right) ^2\left( \frac{1}{2v_q}\mp \frac{1}{v_p- v_g\mp 2v_q} \right) \right\} \left\{ v_{\rm F}^2-\left( v_p\pm v_q \right) ^2 \right\} \right] \\&\quad +\frac{1}{4v_q^2 \left( v_p- v_g\pm v_q \right) ^2} \left[ 5\left( v_p-v_g\pm v_q \right) \left\{ v_{\rm F}^2-\left( v_p\pm v_q \right) ^2 \right\} \pm 3v_q \left\{ v_{\rm F}^2-\left( v_p\pm v_q\right) ^2 \right\} \right. \\&\quad \left. \mp 4v_q^2\left( v_p \pm v_q\right) -\left( 3v_p-3v_g\pm 5v_q \right) \left\{ v_{\rm F}^2\mp 2v_q\left( v_p\pm v_q \right) - \left( v_p\pm v_q \right) ^2 \right\} \right. \\&\quad \left. +2v_q^2\frac{v_{\rm F}^2-\left( v_p\pm v_q\right) ^2 }{v_p-v_g\pm v_q} \right] \pm \frac{v_p}{v_q^2}, \end{aligned} \end{aligned}$$
(178)
$$\begin{aligned} \begin{aligned}&N_{1,-1}=\pm \frac{1}{4v_q^2 \left( v_p-v_g\mp v_q \right) ^2}\left[ 2v_q\left( v_p-v_g\mp v_q \right) \left\{ v_{\rm F}^2-3\left( v_p\pm v_q\right) ^2 -2\left( v_p-v_g\right) \left( v_p\pm v_q \right) \right\} \right. \\&\quad \left. +\left\{ v_{\rm F}^2-\left( v_p\pm v_q \right) ^2 \right\} \left( v_p-v_g\right) \left( v_p-v_g\mp 3v_q \right) \right] \\&\quad \mp \frac{1}{4v_q{\left( v_p-v_g\mp v_q \right) ^2}}\left[ \left( v_p-v_g\mp 3v_q \right) \left\{ v_{\rm F}^2-\left( v_p\pm v_q \right) ^2 \right\} \pm 4v_q\left( v_p\pm v_q \right) \left( v_p-v_g\pm v_q \right) \right] \\&\quad \pm \frac{1}{4v_q^2}\left[ v_p\pm v_q- \left\{ v_{\rm F}^2-\left( v_p\pm v_q \right) ^2 \right\} \right] , \end{aligned} \end{aligned}$$
(179)
$$\begin{aligned} D=\frac{3 e^2 \pi \omega _{\rm p}^2}{4 k\hbar m v_{\rm F}^3}\left[ (v_{\rm F}^2-v_g^2) \frac{(v_p-v_g)^2+v_q^2}{{\left\{ (v_p- v_g)^2-v_q^2 \right\} ^3 }} +\frac{1}{8 v_q^4}\left\{ v_{\rm F}^2 -\left( v_p-3v_q \right) ^2 \right\} \frac{ v_p-v_g-2v_q}{ v_p-v_g-v_q}\right] . \end{aligned}$$
(180)

This expression (180) of D is obtained by using the following relations.

$$\begin{aligned}&\lim _{\nu _g\rightarrow 0} \frac{1}{\Omega -Kv+i\nu _g}=\frac{1}{\Omega -Kv} -i\pi \frac{1}{|K|}\delta \left( v-\frac{\Omega }{K} \right) , \nonumber \\&\quad \lim _{\nu _3\rightarrow 0} \frac{1}{\omega -kv-3kv_q+i\nu _3 }= \frac{1}{\omega -kv-3kv_q} \nonumber \\&\quad -i\pi \frac{1}{|K|} \delta \left( v-v_p+3v_q \right) , \end{aligned}$$
(181)

and we have made use of \(\Omega /K\rightarrow v_g\). The infinitesimal quantities \(|\nu _g|\) and \(|\nu _3|\) are taken to anticipate the Landau damping terms associated with the group velocity and three-plasmon resonances.

Thus, the reduced expressions of P,  Q and R can be obtained from the relations \(P=\beta /\alpha\), \(Q=\gamma /\alpha\) and \(R=D/\alpha\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A.P., Brodin, G. Wave-particle interactions in quantum plasmas. Rev. Mod. Plasma Phys. 6, 5 (2022). https://doi.org/10.1007/s41614-022-00063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-022-00063-7

Keywords

Navigation