Skip to main content
Log in

Trapping in quantum plasmas: a review

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

In this paper, we have presented a comprehensive review of electron trapping in quantum plasmas. We have begun by giving a brief introduction of electron trapping in classical plasmas and then derived the expression of number density of trapped electrons for non-relativistic and relativistically degenerate cases and quantizing magnetic field. We have obtained the expression for Sagdeev potential for all these cases and explored the variation of solitary structures with the important plasma parameters. We have also derived the equations for drift ion acoustic and pure drift waves for spatially nonuniform quantum magnetoplasmas both in collisionless and collisional plasmas. The fundamental differences in trapping in classical and quantum plasmas have been enunciated in detail. The applications of the work in ultra-strong laser plasma interactions and white dwarf stars have also been pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • H. Abbasi, N. Tsintsadze, D. Tskhakaya, Influence of particle trapping on the propagation of ion cyclotron waves. Phys. Plasmas 6(6), 2373–2379 (1999)

    Article  ADS  Google Scholar 

  • S. Ali, P. Shukla, Streaming instability in quantum dusty plasmas. Eur. Phys. J. D 41(2), 319–324 (2007)

    Article  ADS  Google Scholar 

  • S. Ali et al., Linear and nonlinear ion-acoustic waves in an unmagnetized electron-positron-ion quantum plasma. Phys. Plasmas 14(8), 082307 (2007)

    Article  ADS  Google Scholar 

  • L. Ang, T. Kwan, Y. Lau, New scaling of Child-Langmuir law in the quantum regime. Phys. Rev. Lett. 91(20), 208303 (2003)

    Article  ADS  Google Scholar 

  • M. Ayub, H. Shah, M. Qureshi, Trapping effects in a self-gravitating quantum dusty plasma. Phys. Scr. 84(4), 045505 (2011)

    Article  ADS  Google Scholar 

  • S. Balberg, S.L., Shapiro, The properties of matter in white dwarfs and neutron stars. arXiv preprint astro-ph/0004317 (2000a)

  • Balberg, S., Shapiro, S.L., The properties of condensed matter in white dwarfs and neutron stars. In: Handbook of elastic properties of solids, liquids, and gases. 4. (2000b)

  • I.B. Bernstein, J.M. Greene, M.D. Kruskal, Exact nonlinear plasma oscillations. Phys. Rev. 108(3), 546 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  • D. Bohm, A suggested interpretation of the quantum theory in terms of" hidden" variables. I. Phys. Rev. 85(2), 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  • D. Bohm, D. Pines, A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92(3), 609 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Cameron, Notes on the Burgers Equation (University of Maryland, 2011)

    Google Scholar 

  • G. Chabrier, F. Douchin, A. Potekhin, Dense astrophysical plasmas. J. Phys. Condens. Matter 14(40), 9133 (2002)

    Article  ADS  Google Scholar 

  • S. Chandrasekhar, XLVIII. The density of white dwarf stars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 11(70), 592–596 (1931)

    Article  Google Scholar 

  • P. Chatterjee et al., Effect of ion temperature on arbitrary amplitude ion acoustic solitary waves in quantum electron-ion plasmas. Phys. Plasmas 16(4), 042311 (2009)

    Article  ADS  Google Scholar 

  • A.-L. Chian, Effect of ion dynamics on relativistic nonlinear plasma oscillations. Plasma Phys. 24(1), 19 (1982)

    Article  ADS  Google Scholar 

  • J. Daniel, T. Tajima, Outbursts from a black hole via alfvén wave to electromagnetic wave mode conversion. Astrophys. J. 498(1), 296 (1998)

    Article  ADS  Google Scholar 

  • V. Demchenko, I. El-Naggar, On hybrid resonances in non-homogeneous magneto-active plasma. Physica 58(1), 144–160 (1972)

    Article  ADS  Google Scholar 

  • L. Demeio, Quantum corrections to classical BGK modes in phase space. Transport Theory Stat. Phys. 36(1–3), 137–158 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • W. Dwarfs, N. Stars, The Physics of Compact Objects (Wiley, 1983)

    Google Scholar 

  • B. Eliasson, P. Shukla, The formation of electrostatic shocks in quantum plasmas with relativistically degenerate electrons. EPL (Europhysics Letters) 97(1), 15001 (2011)

    Article  ADS  Google Scholar 

  • A. Fayyaz et al., Nonlinear drift ion acoustic waves in degenerate plasmas with adiabatic trapping. Phys. Scr. 95(4), 045609 (2020a)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Fayyaz et al., Coupled drift ion acoustic shock waves with trapped electrons in quantum magnetoplasma. Phys. Scri. 95(8), 085602 (2020b)

    Article  ADS  Google Scholar 

  • G. Fontaine, P. Brassard, The pulsating white dwarf stars. Publ. Astron. Soc. Pac. 120(872), 1043 (2008)

    Article  ADS  Google Scholar 

  • S. Ghosh, G. Lakhina, Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas. Nonlinear Process. Geophys. 11(2), 219–228 (2004)

    Article  ADS  Google Scholar 

  • P. Goldreich, W.H. Julian, Pulsar electrodynamics. Astrophys. J. 157, 869 (1969)

    Article  ADS  Google Scholar 

  • A. Gurevich, Distribution of captured particles in a potential well in the absence of collisions. Sov. Phys. JETP 26(3), 575–580 (1968)

    ADS  Google Scholar 

  • F. Haas, Quantum Plasmas: An Hydrodynamic Approach, vol. 65 (Springer Science & Business Media, 2011)

    Google Scholar 

  • F. Haas, S. Mahmood, Nonlinear ion-acoustic solitons in a magnetized quantum plasma with arbitrary degeneracy of electrons. Phys. Rev. E 94(3), 033212 (2016)

    Article  ADS  Google Scholar 

  • F. Haas, G. Manfredi, M. Feix, Multistream model for quantum plasmas. Phys. Rev. E 62(2), 2763 (2000)

    Article  ADS  Google Scholar 

  • Q. Haque, H. Saleem, Ion acoustic vortices in quantum magnetoplasmas. Phys. Plasmas 15(6), 064504 (2008)

    Article  ADS  Google Scholar 

  • H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publishing Company, 2009)

    Book  Google Scholar 

  • M. Iqbal et al., Nonlinear density excitations in electron-positron-ion plasmas with trapping in a quantizing magnetic field. Phys. Plasmas 24(1), 014503 (2017)

    Article  ADS  Google Scholar 

  • I.U.R.L.V. Klimontovich, Concerning the Spectra of Systems of Interacting Particles (US Atomic Energy Commission, 1952)

    Google Scholar 

  • D. Koester, G. Chanmugam, Physics of white dwarf stars. Rep. Progress Phys. 53(7), 837 (1990)

    Article  ADS  Google Scholar 

  • H. Kuehl, C. Zhang, Effect of ion drift on arbitrary-amplitude ion-acoustic solitary waves. Phys. Fluids B Plasma Phys. 3(3), 555–559 (1991)

    Article  Google Scholar 

  • L. Landau, E. Lifshitz, Statistical physics Pergamon (Elsevier, 1980)

    Google Scholar 

  • N.C. Lee, C.R. Choi, Ion-acoustic solitary waves in a relativistic plasma. Phys. Plasmas 14(2), 022307 (2007)

    Article  ADS  Google Scholar 

  • M. Leontovich, Reviews of Plasma Physics (Springer Science & Business Media, 2012)

    Google Scholar 

  • A. Luque, H. Schamel, Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems. Phys. Rep. 415(5–6), 261–359 (2005)

    Article  ADS  Google Scholar 

  • A. Luque, H. Schamel, R. Fedele, Quantum corrected electron holes. Phys. Lett. A 324(2–3), 185–192 (2004)

    Article  ADS  Google Scholar 

  • J.H. Luscombe, A.M. Bouchard, M. Luban, Electron confinement in quantum nanostructures: self-consistent Poisson-Schrödinger theory. Phys. Rev. B 46(16), 10262 (1992)

    Article  ADS  Google Scholar 

  • S. Mahmood, W. Masood, Electron acoustic solitary waves in unmagnetized two electron population dense plasmas. Phys. Plasmas 15(12), 122302 (2008)

    Article  ADS  Google Scholar 

  • S. Mahmood, A. Mushtaq, Quantum ion acoustic solitary waves in electron–ion plasmas: a Sagdeev potential approach. Phys. Lett. A 372(19), 3467–3470 (2008)

    Article  ADS  Google Scholar 

  • A. Mamun, Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas. Phys. Rev. E 55(2), 1852 (1997)

    Article  ADS  Google Scholar 

  • G. Manfredi, How to model quantum plasmas. Fields Inst. Commun. 46, 263–287 (2005)

    MathSciNet  Google Scholar 

  • G. Manfredi, M. Feix, Theory and simulation of classical and quantum echoes. Phys. Rev. E 53(6), 6460 (1996)

    Article  ADS  Google Scholar 

  • G. Manfredi, P.-A. Hervieux, Autoresonant control of the many-electron dynamics in nonparabolic quantum wells. Appl. Phys. Lett. 91(6), 061108 (2007)

    Article  ADS  Google Scholar 

  • P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer Science & Business Media, 2012)

    Google Scholar 

  • W. Masood, Obliquely propagating low frequency electromagnetic shock waves in two dimensional quantum magnetoplasmas. Phys. Plasmas 16(4), 042314 (2009a)

    Article  ADS  Google Scholar 

  • W. Masood, Drift ion acoustic solitons in an inhomogeneous 2-D quantum magnetoplasma. Phys. Lett. A 373(16), 1455–1459 (2009b)

    Article  ADS  Google Scholar 

  • W. Masood et al., Coupled nonlinear drift and ion acoustic waves in dense dissipative electron-positron-ion magnetoplasmas. Phys. Plasmas 16(11), 112302 (2009)

    Article  ADS  Google Scholar 

  • W. Masood, N. Jehan, A.M. Mirza, A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas. Phys. Plasmas 17(3), 032314 (2010)

    Article  ADS  Google Scholar 

  • W. Masood et al., A nonlinear model for magnetoacoustic waves in dense dissipative plasmas with degenerate electrons. Phys. Plasmas 21(10), 102311 (2014)

    Article  ADS  Google Scholar 

  • F.C. Michel, Theory of pulsar magnetospheres. Rev. Mod. Phys. 54(1), 1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Mola, G. Manfredi, M. Feix, Expansion of a quantum electron gas. J. Plasma Phys. 50(1), 145–162 (1993)

    Article  ADS  Google Scholar 

  • A. Mushtaq, A. Qamar, Parametric studies of nonlinear magnetosonic waves in two-dimensional quantum magnetoplasmas. Phys. Plasmas 16(2), 022301 (2009)

    Article  ADS  Google Scholar 

  • A. Mushtaq, H. Shah, Study of non-Maxwellian trapped electrons by using generalized (r, q) distribution function and their effects on the dynamics of ion acoustic solitary wave. Phys. Plasmas 13(1), 012303 (2006)

    Article  ADS  Google Scholar 

  • Y. Nejoh, Double layers, spiky solitary waves, and explosive modes of relativistic ion-acoustic waves propagating in a plasma. Phys. Fluids B Plasma Phys. 4(9), 2830–2840 (1992)

    Article  Google Scholar 

  • P. Norreys et al., Intense laser-plasma interactions: new frontiers in high energy density physics. Phys. Plasmas 16(4), 041002 (2009)

    Article  ADS  Google Scholar 

  • J.A. Orosz et al., An optical precursor to the recent X-ray outburst of the black hole binary GRO J1655–40. Astrophys. J. Lett. 478(2), L83 (1997)

    Article  ADS  Google Scholar 

  • J.P. Ostriker, Recent developments in the theory of degenerate dwarfs. Annu. Rev. Astron. Astrophys. 9(1), 353–366 (1971)

    Article  ADS  Google Scholar 

  • D. Pines, Quantum plasma physics. J. Nucl. Energy Part C Plasma Phys. 2(5), 5 (1961)

    Article  MathSciNet  Google Scholar 

  • L. Pitaevskii, E. Lifshitz, Physical kinetics, vol. 10 (Butterworth-Heinemann, 2012)

    Google Scholar 

  • A. Pointon, Introduction to Statistical Physics (Longman, London and New York, 1980)

    Google Scholar 

  • H. Ren et al., Electrostatic drift modes in quantum dusty plasmas with Jeans terms. Phys. Plasmas 16(10), 103705 (2009)

    Article  ADS  Google Scholar 

  • R. Sagdeev, M. Leontovich, Reviews of Plasma Physics (Consultants Bureau New York, 1966)

    Google Scholar 

  • O. Sah, J. Manta, Nonlinear electron-acoustic waves in quantum plasma. Phys. Plasmas 16(3), 032304 (2009)

    Article  ADS  Google Scholar 

  • A. Saha, B. Pradhan, S. Banerjee, Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma. Eur. Phys. J. plus 135(2), 1–13 (2020)

    Article  Google Scholar 

  • B. Sahu, R. Roychoudhury, Electron-acoustic solitary waves and double layers in a relativistic electron-beam plasma system. Phys. Plasmas 11(5), 1947–1954 (2004)

    Article  ADS  Google Scholar 

  • B. Sahu, R. Roychoudhury, Electron acoustic solitons in a relativistic plasma with nonthermal electrons. Phys. Plasmas 13(7), 072302 (2006)

    Article  ADS  Google Scholar 

  • H. Shah, M. Qureshi, N. Tsintsadze, Effect of trapping in degenerate quantum plasmas. Phys. Plasmas 17(3), 032312 (2010)

    Article  ADS  Google Scholar 

  • H. Shah et al., Effects of trapping and finite temperature in a relativistic degenerate plasma. Phys. Plasmas 18(10), 102306 (2011)

    Article  ADS  Google Scholar 

  • H. Shah et al., Effect of trapping in a degenerate plasma in the presence of a quantizing magnetic field. Phys. Plasmas 19(9), 092304 (2012)

    Article  ADS  Google Scholar 

  • H. Shah, W. Masood, Z. Ali, Adiabatic trapping in coupled kinetic Alfvén-acoustic waves. Phys. Plasmas 20(3), 032301 (2013)

    Article  ADS  Google Scholar 

  • H. Shah et al., Drift solitary structures in inhomogeneous degenerate quantum plasmas with trapped electrons. Astrophys. Sp. Sci. 350(2), 615–622 (2014)

    Article  ADS  Google Scholar 

  • B. Shokri, S. Khorashady, Pramana (2003). https://doi.org/10.1007/BF02704506

    Article  Google Scholar 

  • B. Shokri, A. Rukhadze, Quantum surface wave on a thin plasma layer. Phys. Plasmas 6(9), 3450–3454 (1999a)

    Article  ADS  Google Scholar 

  • B. Shokri, A. Rukhadze, Quantum drift waves. Phys. Plasmas 6(12), 4467–4471 (1999b)

    Article  ADS  Google Scholar 

  • P.K. Shukla, B. Eliasson, Recent developments in quantum plasma physics. Plasma Phys. Control. Fusion 52(12), 124040 (2010a)

    Article  ADS  Google Scholar 

  • P.K. Shukla, B. Eliasson, Nonlinear aspects of quantum plasma physics. Phys. Usp. 53(1), 51 (2010b)

    Article  ADS  Google Scholar 

  • P. Shukla, B. Eliasson, Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83(3), 885 (2011)

    Article  ADS  Google Scholar 

  • P.K. Shukla, L. Stenflo, New drift modes in a nonuniform quantum magnetoplasma. Phys. Let. A 357(3), 229–231 (2006)

    Article  ADS  Google Scholar 

  • N. Shukla et al., Ion streaming instability in a quantum dusty magnetoplasma. Phys. Plasmas 15(4), 044503 (2008)

    Article  ADS  Google Scholar 

  • P. Shukla, A. Mamun, D. Mendis, Nonlinear ion modes in a dense plasma with strongly coupled ions and degenerate electron fluids. Phys. Rev. E 84(2), 026405 (2011)

    Article  ADS  Google Scholar 

  • H. Siddiqui, H. Shah, N. Tsintsadze, Effect of trapping on vortices in plasma. J. Fusion Energy 27(3), 216–224 (2008)

    Article  ADS  Google Scholar 

  • R. Silvotti et al., Search for p-mode oscillations in DA white dwarfs with VLT-ULTRACAM-I. Upper limits to the p-modes. Astron. Astrophys. 525, A64 (2011)

    Article  Google Scholar 

  • V.O. Strasser, Relativistic arbitrary-amplitude electrostatic solitons in a plasma. Phys. Rev. E 53(5), 5194 (1996)

    Article  ADS  Google Scholar 

  • N.-D. Suh, M.R. Feix, P. Bertrand, Numerical simulation of the quantum Liouville-Poisson system. J. Comput. Phys. 94(2), 403–418 (1991)

    Article  ADS  Google Scholar 

  • Tsintsadze, L.N. Quantization and excitation of longitudinal electrostatic waves in magnetized quantum plasmas. In: AIP Conference Proceedings, vol 1306 (American Institute of Physics, 2010), pp. 89

    Google Scholar 

  • N. Tsintsadze, E. Tsikarishvili, Parametric instabilities in relativistic plasma. Astrophys. Sp. Sci. 39(1), 191–199 (1976)

    Article  ADS  Google Scholar 

  • N. Tsintsadze, D. Tskhakaya, On the theory of electrosound waves in a plasma. Sov. Phys. JETP 72, 480 (1977)

    Google Scholar 

  • N. Tsintsadze et al., Nonlinear screening effect in an ultrarelativistic degenerate electron-positron gas. Phys. Plasmas 16(11), 112307 (2009)

    Article  ADS  Google Scholar 

  • Tyshetskiy, Y.O., Vladimirov, S., Kompaneets, R. Unusual physics of quantum plasmas. Boпpocы aтoмнoй нayки и тexники, (2013)

  • H. Van Horn, Dense astrophysical plasmas. Science 252(5004), 384–389 (1991)

    Article  ADS  Google Scholar 

  • M.A. Wahab, Solid State Physics: Structure and Properties of Materials (Alpha Science Int’l Ltd., 2005)

    Google Scholar 

  • J. Weiland, Collective Modes in Inhomogeneous Plasmas: Kinetic and Advanced Fluid Theory (CRC Press, 1999)

    Google Scholar 

  • D. Winget, S. Kepler, Pulsating white dwarf stars and precision asteroseismology. Annu. Rev. Astron. Astrophys. 46, 157–199 (2008)

    Article  ADS  Google Scholar 

  • E. Witt, W. Lotko, Ion-acoustic solitary waves in a magnetized plasma with arbitrary electron equation of state. Phys. Fluids 26(8), 2176–2185 (1983)

    Article  ADS  Google Scholar 

  • M. Yahia, I. Azzouz, W. Moslem, Quantum effects in electron beam pumped GaAs. Appl. Phys. Lett. 103(8), 082105 (2013)

    Article  ADS  Google Scholar 

  • M. Yalabik et al., Quantum mechanical simulation of charge transport in very small semiconductor structures. IEEE Trans. Electron Devices 36(6), 1009–1013 (1989)

    Article  ADS  Google Scholar 

  • M. Zobaer et al., K-dV and Burgers’ equations on DA waves with strongly coupled dusty plasma. Astrophys. Sp. Sci. 346(2), 351–357 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Masood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, W., Shah, H.A. & Qureshi, M.N.S. Trapping in quantum plasmas: a review. Rev. Mod. Plasma Phys. 6, 11 (2022). https://doi.org/10.1007/s41614-022-00072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-022-00072-6

Keywords

Navigation