Skip to main content
Log in

The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth’s magnetosphere

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

One of the most important issues in space physics is to identify the dominant processes that transfer energy from the solar wind to energetic particle populations in Earth’s inner magnetosphere. Ultra-low-frequency (ULF) waves are an important consideration as they propagate electromagnetic energy over vast distances with little dissipation and interact with charged particles via drift resonance and drift-bounce resonance. ULF waves also take part in magnetosphere-ionosphere coupling and thus play an essential role in regulating energy flow throughout the entire system. This review summarizes recent advances in the characterization of ULF Pc3-5 waves in different regions of the magnetosphere, including ion and electron acceleration associated with these waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(modified from Fu et al. (2012a, b))

Fig. 4
Fig. 5
Fig. 6

Adopted from Liu et al. (2016a, b)

Fig. 7
Fig. 8
Fig. 9
Fig. 10

Adapted from Liu et al. (2013)

Fig. 11
Fig. 12
Fig. 13
Fig. 14

From Shi et al. (2014)

Fig. 15

(From Hao et al. (2014))

Fig. 16
Fig. 17
Fig. 18
Fig. 19

From Shen et al. (2015)

Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59

Similar content being viewed by others

References

  • B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere 1. Dominant physical processes. J. Geophys. Res. 103, 2385–2396 (1998a). doi:10.1029/97JA02919

    Article  ADS  Google Scholar 

  • B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere 2. Sensitivity to model parameters. J. Geophys. Res. 103, 2397–2408 (1998b). doi:10.1029/97JA02920

    Article  ADS  Google Scholar 

  • M.L. Adrian, D.L. Gallagher, L.A. Avanov, Image EUV observation of radially bifurcated plasmaspheric features: first observations of a possible standing ULF waveform in the inner magnetosphere. J. Geophys. Res. 109, A01203 (2004). doi:10.1029/2003JA009974

    Article  ADS  Google Scholar 

  • W. Allan, Quarter-wave ulf pulsations, Planet. Space Sci. 31(3), 323–330 (1983)

    Article  ADS  Google Scholar 

  • W. Allan, M.E. Poulter, ULF waves—their relationship to the structure of the Earth’s magnetosphere. Reports of Prog. Phys. 55, 533–598 (1992)

    Article  ADS  Google Scholar 

  • B.J. Anderson, M.J. Engebretson, S.P. Rounds, L.J. Zanetti, T.A. Potemra, A statistical study of Pc3-5 pulsations observed by the AMPTE/CCE magnetic field experiment. J. Geophys. Res. 95(A7), 10495–10523 (1990)

    Article  ADS  Google Scholar 

  • B.J. Anderson, D.C. Hamilton, Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions. J. Geophys. Res. 98(A7), 11369–11382 (1993)

    Article  ADS  Google Scholar 

  • R.L. Arnoldy, T.E. Moore, S.I. Akasofu, Plasma injection events at synchronous orbit related to positive Dst. J. Geophys. Res. 87, 77–84 (1982)

    Article  ADS  Google Scholar 

  • D.N. Baker, S.G. Kanekal, X. Li et al., An extreme distortion of the Van Allen belt arising from the ‘Halloween’ solar storm in 2003. Nature 432, 878–881 (2004). doi:10.1038/nature03116

    Article  ADS  Google Scholar 

  • M. Beharrell, A.J. Kavanagh, F. Honary, On the origin of high m magnetospheric waves. J. Geophys. Res. 115, A02201 (2010). doi:10.1029/2009JA014709

    Article  ADS  Google Scholar 

  • J.B. Blake, W.A. Kolasinski, R.W. Fillius et al., Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991. Geophys. Res. Lett. 19, 821–824 (1992)

    Article  ADS  Google Scholar 

  • N. Brice, Fundamentals of very low frequency emission generation mechanisms. J. Geophys. Res. 69, 4515–4522 (1964). doi:10.1029/JZ069i021p04515

    Article  ADS  Google Scholar 

  • W.L. Brown, L.J. Cahill, L.R. Davis et al., Acceleration of trapped particles during a magnetic storm on April 18, 1965. J. Geophys. Res. 73, 153–161 (1968)

    Article  ADS  Google Scholar 

  • R.R. Brown, T.R. Hartz, B. Landmark, H. Leinbach, J. Ortner, Large-scale electron bombardment of the atmosphere at the sudden commencement of a geomagnetic storm. J. Geophys. Res. 66, 1035 (1961)

    Article  ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. Space Phys. 94(A9), 11821–11842 (1989)

    Article  ADS  Google Scholar 

  • L.J. Cahill, N.G. Lin, J.H. Waite, M.J. Engebretson, M. Sugiura, Toroidal standing waves excited by a storm sudden storm commencement: DE 1 observations. J. Geophys. Res. 95, 7857–7867 (1990)

    Article  ADS  Google Scholar 

  • D.L. Carpenter, R.R. Anderson, An ISEE/whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res. 97, 1097–1108 (1992)

    Article  ADS  Google Scholar 

  • D.L. Carpenter, J. Lemaire, The plasmasphere boundary layer. Ann. Geophys. 22, 4291–4298 (2004)

    Article  ADS  Google Scholar 

  • S. Chapman, J. Bartels, Geomagnetism (Oxford University Press, United Kingdom, 1940)

    Google Scholar 

  • M.A. Chelpanov, P.N. Mager, D.Y. Klimushkin, O.I. Berngardt, O.V. Mager, Experimental evidence of drift compressional waves in the magnetosphere: an Ekaterinburg coherent decameter radar case study. J. Geophys. Res. Space Phys. 121, 1315–1326 (2016). doi:10.1002/2015JA022155

    Article  ADS  Google Scholar 

  • Y. Chen, G.D. Reeves, R.H.W. Friedel, The energization of relativistic electrons in the outer Van Allen radiation belt. Nat. Phys. 3, 614–617 (2007)

    Article  Google Scholar 

  • X.-R. Chen, Q.-G. Zong, X.-Z. Zhou, J.B. Blake, J.R. Wygant, C.A. Kletzing, Van allen probes observation of a 360° phase shift in the flux modulation of injected electrons by ulf waves. Geophys. Res. Lett. (2016). doi:10.1002/2016GL071252

    Google Scholar 

  • S.G. Claudepierre et al., Van Allen Probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons. Geophys. Res. Lett. 40, 4491–4497 (2013). doi:10.1002/grl.50901

    Article  ADS  Google Scholar 

  • S.G. Claudepierre, S.R. Elkington, M. Wiltberger, Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. 113, 5218 (2008)

    Article  Google Scholar 

  • S.G. Claudepierre, M. Wiltberger, S.R. Elkington, W. Lotko, M.K. Hudson, Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations. Geophys. Res. Lett. 36, L13101 (2009)

    Article  ADS  Google Scholar 

  • W. Cummings, R. O’sullivan, P. Coleman, Standing alfvén waves in the magnetosphere. J. Geophys. Res. 74(3), 778–793 (1969). doi:10.1029/JA074i003p00778

    Article  ADS  Google Scholar 

  • I.A. Daglis, W.I. Axford, Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail. J. Geophys. Res. 101, 5047–5065 (1996)

    Article  ADS  Google Scholar 

  • I.A. Daglis, W. Baumjohann, J. Geiss, S. Orsini, E. Sarris, M. Scholer, B. Tsurutani, D. Vassiliadis, Recent advances, open questions and future directions in solar-terrestrial research. Phys. Chem. Earth 24, 5–28 (1999)

    Google Scholar 

  • L. Dai et al., Excitation of poloidal standing Alfven waves through drift resonance wave-particle interaction. Geophys. Res. Lett. 40, 4127–4132 (2013). doi:10.1002/grl.50800

    Article  ADS  Google Scholar 

  • A.W. Degeling, L.G. Ozeke, R. Rankin, I.R. Mann, K. Kabin, Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves. J. Geophys. Res. 113, A02208 (2008). doi:10.1029/2007JA012411

    ADS  Google Scholar 

  • A.W. Degeling, R. Rankin, K. Kabin, I.J. Rae, F.R. Fenrich, Modeling ULF waves in a compressed dipole magnetic field. J. Geophys. Res. 115, A10212 (2010). doi:10.1029/2010JA015410

    Article  ADS  Google Scholar 

  • A.W. Degeling, R. Rankin, Q.-G. Zong, Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations, 2014. J. Geophys. Res. Space Phys. 119, 8916–8928 (2014). doi:10.1002/2013JA019672

    Article  ADS  Google Scholar 

  • R.E. Denton, J.D. Menietti, J. Goldstein et al., Electron density in the magnetosphere. J. Geophys. Res. 109(A9), A09215 (2004a)

    Article  ADS  Google Scholar 

  • R.E. Denton, K. Takahashi, R.R. Anderson et al., Magnetospheric toroidal Alfvén wave harmonics and the field line distribution of mass density. J. Geophys. Res. 109(A6), A06202 (2004b)

    Article  ADS  Google Scholar 

  • R.E. Denton, K. Takahashi, I.A. Galkin et al., Distribution of density along magnetospheric field lines. J. Geophys. Res. 111, A04213 (2006)

    Article  ADS  Google Scholar 

  • J.P. Eastwood, D.G. Sibeck, V. Angelopoulos, T.D. Phan, S.D. Bale, J.P. McFadden, C.M. Cully, S.B. Mende, D. Larson, S. Frey, C.W. Carlson, K.-H. Glassmeier, H.U. Auster, A. Roux, O. Le Contel, Themis observations of a hot flow anomaly: solar wind, magnetosheath, and ground-based measurements. Geophys. Res. Lett. 35(17), l17S03 (2008). doi:10.1029/2008GL033475

    Article  Google Scholar 

  • S.R. Elkington, M.K. Hudson, A.A. Chan, Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillation. Geophys. Res. Lett. 26, 3273–3276 (1999)

    Article  ADS  Google Scholar 

  • S.R. Elkington, M.K. Hudson, A.A. Chan, Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res. 108, 111 (2003)

    Article  Google Scholar 

  • S.R. Elkington, M. Wiltberger, A.A. Chan et al., Physical models of the geospace radiation environment. J. Atmos. Solar-Terr. Phys. 66, 1371–1387 (2004). doi:10.1016/j.jastp.2004.03.023

    Article  ADS  Google Scholar 

  • P.T.I. Eriksson, L.G. Blomberg, A.D.M. Walker, K.-H. Glassmeier, Poloidal ULF oscillations in the dayside magnetosphere: a cluster study. Ann. Geophys. 23, 2679–2686 (2005). doi:10.5194/angeo-23-2679-2005

    Article  ADS  Google Scholar 

  • D.H. Fairfield et al., Geotail observations of the Kelvin–Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields. J. Geophys. Res. 105(A9), 21159–21173 (2000)

    Article  ADS  Google Scholar 

  • M. Fillingim, J. Eastwood, G. Parks, V. Angelopoulos, I. Mann, S. Mende, A. Weatherwax, Polar UVI and THEMIS GMAG observations of the ionospheric response to a hot flow anomaly. J Atmos Solar-Terr Phys 73(1), 145 (2011). doi:10.1016/j.jastp.2010.03.001

    Article  ADS  Google Scholar 

  • J. Foster, J. Wygant, M. Hudson, A. Boyd, D. Baker, P. Erickson, H.E. Spence, Shock-induced prompt relativistic electron acceleration in the inner magnetosphere. J. Geophys. Res. 120(3), 1661–1674 (2015). doi:10.1002/2014JA020642

    Article  Google Scholar 

  • B.J. Fraser, J.L. Horwitz, J.A. Slavin et al., Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications. Geophys. Res. Lett. 32, L04102 (2005)

    Article  ADS  Google Scholar 

  • R.H.W. Friedel, G. Reevesa, T. Obara, Relativistic electron dynamics in the inner magnetosphere—a review. J. Atmos. Terr. Phys. 64, 265–282 (2002)

    Article  ADS  Google Scholar 

  • H.S. Fu, J.B. Cao, F.S. Mozer, H.Y. Lu, B. Yang, Chorus intensification in response to interplanetary shock. J. Geophys. Res. 117, A01203 (2012a). doi:10.1029/2011JA016913

    ADS  Google Scholar 

  • H.S. Fu, J.B. Cao, B. Yang, H.Y. Lu, Electron loss and acceleration during storm time: the contribution of wave-particle interaction, radial diffusion, and transport processes. J. Geophys. Res. 116, A10210 (2011). doi:10.1029/2011JA016672

    ADS  Google Scholar 

  • H.S. Fu, J.B. Cao, Q.-G. Zong, H.Y. Lu, S.Y. Huang, X.H. Wei, Y.D. Ma, The role of electrons during chorus intensification: energy source and energy loss. J. Atmos. Sol. Terr. Phys. 80, 37–47 (2012b). doi:10.1016/j.jastp.2012.03.004

    Article  ADS  Google Scholar 

  • S. Fu, B. Wilken, Q. Zong, Z. Pu, Ion composition variations in the inner magnetosphere: individual and collective storm effects in 1991. J. Geophys. Res. 106(A12), 29683–29704 (2001). doi:10.1029/2000JA900173

    Article  ADS  Google Scholar 

  • M. Gkioulidou, A.Y. Ukhorskiy, D.G. Mitchell, T. Sotirelis, B.H. Mauk, L.J. Lanzerotti, The role of small-scale ion injections in the buildup of Earth’s ring current pressure: van Allen Probes observations of the 17 March 2013 storm. J. Geophys. Res. 119, 7327–7342 (2014). doi:10.1002/2014JA020096

    Article  Google Scholar 

  • K.-H. Glassmeier, S. Buchert, U. Motschmann, A. Korth, A. Pedersen, Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities. Ann. Geophys. 17, 338–350 (1999)

    Article  ADS  Google Scholar 

  • A. Grinsted, J.C. Moore, S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004)

    Article  ADS  Google Scholar 

  • A.J. Halford, S.L. McGregor, K.R. Murphy, R.M. Millan, M.K. Hudson, L.A. Woodger, C.A. Cattel, A.W. Breneman, I.R. Mann, W.S. Kurth, G.B. Hospodarsky, M. Gkioulidou, J.F. Fennell, BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss. J. Geophys. Res. Space Phys. (2015). doi:10.1002/2014JA020873

    Google Scholar 

  • D.C. Hamilton, G. Gloeckler, F.M. Ipavich, W. Stdemann, B. Wilken, G. Kremser, Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 93, 14343–14355 (1988)

    Article  ADS  Google Scholar 

  • Y. Hao et al., Interactions of energetic electrons with ulf waves triggered by interplanetary shock: Van allen probes observations in the magnetotail. J. Geophys. Res. 119(10), 8262–8273 (2014). doi:10.1002/2014JA020023

    Article  Google Scholar 

  • Y. Hao et al., Relativistic electron dynamics produced by azimuthal localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions. Geophys. Res. Lett. (2017) (submitted)

  • Y.Q. Hao, Z. Xiao, H. Zou et al., Energetic particle radiations measured by particle detector on board CBERS-1 satellite. Chin. Sci. Bull. 52(5), 665–670 (2007)

    Article  Google Scholar 

  • M.D. Hartinger, D.L. Turner, F. Plaschke, V. Angelopoulos, H. Singer, The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. J. Geophys. Res. Space Phys. 118, 299–312 (2013)

    Article  ADS  Google Scholar 

  • H. Hasegawa, M. Fujimoto, T.-D. Phan et al., Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nature 430(7001), 755–758 (2004)

    Article  ADS  Google Scholar 

  • K. Hayashi, T. Oguti, T. Watanbe, K. Tsuruda, S. Kokubun, R.E. Horita, Power harmonic radiation enhancement during the sudden commencement of a magnetic storm. Nature 275, 627–629 (1978)

    Article  ADS  Google Scholar 

  • J.L. Horwitz, R.H. Comfort, C.R. Chappell, Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase. Geophys. Res. Lett. 11, 701 (1984)

    Article  ADS  Google Scholar 

  • M. Hudson, R. Denton, M. Lessard, E. Miftakhova, R. Anderson, A study of Pc-5 ULF oscillations. Ann. Geophys. 22, 289–302 (2004)

    Article  ADS  Google Scholar 

  • M.K. Hudson, S.R. Elkington, J.G. Lyon, V.A. Marchenko, I. Roth, M. Temerin, J.B. Blake, M.S. Gussenhoven, J.R. Wygant, Simulations of radiation belt formation during storm sudden commencements. J. Geophys. Res. 102, 14087–14102 (1997)

    Article  ADS  Google Scholar 

  • M. Hudson, B. Kress, H. Mueller et al., Relationship of the Van Allen radiation belts to solar wind drivers. J Atmos Solar-Terr Phys 70, 708–729 (2008)

    Article  ADS  Google Scholar 

  • W.J. Hughes, R.L. McPhenon, J.N. Barfield, Geomagnetic pulsations observed simultaneously on three geostationary satellites. J. Geophys. Res. 83, 1109 (1978)

    Article  ADS  Google Scholar 

  • W.J. Hughes, D.J. Southwood, The screening of micropulsation signals by the atmosphere and ionosphere, J. Geophys. Res. 81(19), 3234–3240 (1976a)

  • W.J. Hughes, D.J. Southwood, An illustration of modification of geomagnetic pulsation structure by the ionosphere. J. Geophys. Res. 81(19), 3241–3247 (1976b)

  • K.E.J. Huttunen, J. Slavin, M. Collier, H.E.J. Koskinen, A. Szabo, E. Tanskanen, A. Balogh, E. Lucek, H. Rème, Cluster observations of sudden impulses in the magnetotail caused by interplanetary shocks and pressure increases. Ann. Geophys. 23(2), 609–624 (2005)

    Article  ADS  Google Scholar 

  • K.S. Jacobsen, T.D. Phan, J.P. Eastwood, D.G. Sibeck, J.I. Moen, V. Angelopoulos, J.P. McFadden, M.J. Engebretson, G. Provan, D. Larson, K.-H. Fornaon, Themis observations of extreme magnetopause motion caused by a hot flow anomaly. J Geophys Res: Space Phys 114(A8), a08210 (2009). doi:10.1029/2008JA013873

    Article  ADS  Google Scholar 

  • M.K. James, T.K. Yeoman, P.N. Mager, D.Y. Klimushkin, The spatio-temporal characteristics of ULF waves driven by substorm injected particles. J. Geophys. Res. Space Phys. 118, 1737–1749 (2013). doi:10.1002/jgra.50131

    Article  ADS  Google Scholar 

  • M.K. James, T.K. Yeoman, P.N. Mager, D.Y. Klimushkin, Multiradar observations of substorm-driven ULF waves. J. Geophys. Res. Space Phys 121, 5213–5232 (2016). doi:10.1002/2015JA022102

    Article  ADS  Google Scholar 

  • S.G. Kanekal, D.N. Baker, J.F. Fennell, A. Jones, Q. Schiller, I.G. Richardson, J.R. Wygant, Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock. J. Geophys. Res. A Space Phys. (2016). doi:10.1002/2016JA022596

    Google Scholar 

  • K. Keika, L.M. Kistler, P.C. Brandt, Energization of o+ ions in the earth’s inner magnetosphere and the effects on ring current buildup: a review of previous observations and possible mechanisms. J. Geophys. Res. 118(7), 4441–4464 (2013). doi:10.1002/jgra.50371

    Article  Google Scholar 

  • K. Keika, R. Nakamura, W. Baumjohann, A. Runov et al. Response of the inner magnetosphere and the plasma sheet to a sudden impulse. J. Geophys. Res. Space Phys. 113(A7), A07S35 (2008)

    Article  Google Scholar 

  • Keiling and Takahashi, Space Sci. Rev. 161, 63–148 (2011). doi:10.1007/s11214-011-9818-4

    Article  ADS  Google Scholar 

  • C.F. Kennel, H.E. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1 (1966)

    Article  ADS  Google Scholar 

  • L. Kepko, H.E. Spence, Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res. 108(A6), 1257 (2003)

    Article  Google Scholar 

  • K.-H. Kim, C.A. Cattell, D.-H. Lee, K. Takahashi, K. Yumoto, K. Shiokawa, F.S. Mozer, M. Andre, Magnetospheric responses to sudden and quasiperiodic solar wind variations. J. Geophys. Res. 107(A11), 1406 (2002)

    Article  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Charged particle behavior in low-frequency geomagnetic pulsations 3. Spin phase dependence. J. Geophys. Res. 88(A1), 174–182 (1983)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Mirror instability II: The mechanism of nonlinear saturation. J. Geophys. Res. 101(A8), 17365–17371 (1996)

    Article  ADS  Google Scholar 

  • B.T. Kress, M.K. Hudson, M.D. Looper et al., Lobal MHD test particle simulations of > 10 MeV radiation belt electrons during storm sudden commencement. J. Geophys. Res. 112, 9215 (2007). doi:10.1029/2006JA012218

    Article  Google Scholar 

  • L.J. Lanzerotti, D.J. Southwood, Hydromagnetic waves, Solar System Plasma Physics, Vol 3, (A79-53667 24-46) (North-Holland Publishing Co., Amsterdam, 1979), pp. 109–135

    Google Scholar 

  • M. De Lauretis, M. Regi, P. Francia, M.F. Marcucci, E. Amata, G. Pallocchia, Solar wind-driven Pc5 waves observed at a polar cap station and in the near cusp ionosphere. J. Geophys. Res. Space Phys. 121, 11145–11156 (2016). doi:10.1002/2016JA023477

    Article  ADS  Google Scholar 

  • G. Le et al., Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm. Geophys. Res. Lett. 44, 3456–3464 (2017). doi:10.1002/2017GL073048

    Article  ADS  Google Scholar 

  • G. Le, P.J. Chi, R.J. Strangeway, J.A. Slavin, Observations of a unique type of ULF wave by low-altitude Space Technology 5 satellites. J. Geophys. Res. 116, A08203 (2011). doi:10.1029/2011JA016574

    ADS  Google Scholar 

  • D.H. Lee, R. Lysak, Magnetospheric ULF wave coupling in the dipole model: the impulsive excitation. J. Geophys. Res. 94, 17097–17103 (1989)

    Article  ADS  Google Scholar 

  • E.A. Lee, I.R. Mann, T.M. Lotoaniu, Z.C. Dent, Global Pc5 pulsations observed at unusually low L during the great magnetic storm of 24 March 1991. J. Geophys. Res. 112, A05208 (2007)

    ADS  Google Scholar 

  • M.R. Lessard, M.K. Hudson, B.J. Anderson, R.L. Arnoldy, H. Lhr, G.D. Reeves, N. Sato, A.T. Weatherwax, Evidence for a global disturbance with monochromatic pulsations and energetic electron bunching. J. Geophys. Res. 104(A4), 7011–7023 (1999)

    Article  ADS  Google Scholar 

  • X. Li, I. Roth, M. Temerin, J.R. Wygant, M.K. Hudson, J.B. Blake, Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 ssc. Geophys. Res. Lett. 20, 2423–2426 (1993)

    Article  ADS  Google Scholar 

  • L. Li, X.Z. Zhou, Q.G. Zong et al., Ultralow frequency wave characteristics extracted from particle data: Application of IGSO observations. Sci. China Tech. Sci. (2017a). doi:10.1007/s11431-016-0702-4

    Google Scholar 

  • L. Li, X.-Z. Zhou, Q.-G. Zong et al., Charged particle behavior in localized ultralow frequency waves: Theory and observations. Geophys. Res. Lett. (2017b). doi:10.1002/2017GL073392

    Google Scholar 

  • N. Lin, R.L. McPherron, M.G. Kivelson, D.J. Williams, An unambiguous determination of the propagation of a compressional Pc5 wave. J. Geophys. Res. 93, 5601–5612 (1988). doi:10.1029/JA093iA06p05601

    Article  ADS  Google Scholar 

  • W. Liu et al., Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: a statistical study. J. Geophys. Res. 114, A12206 (2009). doi:10.1029/2009JA014243

    Article  ADS  Google Scholar 

  • H. Liu et al., Compressional ulf wave modulation of energetic particles in the inner magnetosphere. J. Geophys. Res. 121(7), 6262C6276 (2016a). doi:10.1002/2016JA022706

    Google Scholar 

  • W. Liu, J.B. Cao, X. Li, T.E. Sarris, Q.-G. Zong, M. Hartinger, K. Takahashi, H. Zhang, Q.Q. Shi, V. Angelopoulos, Poloidal ULF wave observed in the plasmasphere boundary layer. J. Geophys. Res. Space Phys. 118, 4298–4307 (2013). doi:10.1002/jgra.50427

    Article  ADS  Google Scholar 

  • W. Liu, T.E. Sarris, X. Li, R. Ergun, V. Angelopoulos, J. Bonnell, K.H. Glassmeier, Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere. J. Geophys. Res. 115, A12201 (2010). doi:10.1029/2010JA015299

    ADS  Google Scholar 

  • W. Liu, W. Tu, X. Li, T. Sarris, Y. Khotyaintsev, H. Fu, H. Zhang, Q. Shi, On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophys. Res. Lett. 43, 1023–1030 (2016b). doi:10.1002/2015GL067398

    Article  ADS  Google Scholar 

  • Y. Liu, Q.-G. Zong, Energetic electron response to interplanetary shocks at geosynchronous orbit. J. Geophys. Res. 120(6), 4669–4683 (2015). doi:10.1002/2014JA020756

    Article  Google Scholar 

  • T.M. Loto’aniu, I.R. Mann, L.G. Ozeke et al., Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J. Geophys. Res. 111, 4218 (2006)

    Article  Google Scholar 

  • L.R. Lyons, R.M. Thorne, The magnetospheric reflection of whistlers. Planet. Space Sci. 18, 1753–1767 (1970). doi:10.1016/0032-0633(70)90009-7

    Article  ADS  Google Scholar 

  • L.R. Lyons, R.M. Thorne, C.F. Kennel, Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77, 3455–3474 (1972). doi:10.1029/JA077i019p03455

    Article  ADS  Google Scholar 

  • M.L. Mazzino, Field line resonances in earth’s magnetosphere: a study of their observation, characterization and wave sources in the solar wind, PhD thesis (2015)

  • P.N. Mager, D.Y. Klimushkin, V.A. Pilipenko, S. Sch¨afer, Field-aligned structure of poloidal alfvn waves in a finite pressure plasma. Ann. Geophys. 27(10), 3875–3882 (2009). doi:10.5194/angeo-27-3875-2009

    Article  ADS  Google Scholar 

  • I.R. Mann et al., Discovery of the action of a geophysical synchrotron in the earths van allen radiation belts. Nature commun (2013). doi:10.1038/ncomms3795

    Google Scholar 

  • R.A. Mathie, I.R. Mann, On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. J. Geophys. Res. 106, 29783 (2001)

    Article  ADS  Google Scholar 

  • S. Matsushita, Increase of ionization associated with geomagnetic sudden commencements. J. Geophys. Res. 66, 3958 (1961)

    Article  ADS  Google Scholar 

  • M.B. Moldwin, L. Downward, H.K. Rassoul et al., A new model of the location of the plasmapause: CRRES results. J. Geophys. Res. 107(A11), 1339 (2002)

    Article  Google Scholar 

  • T.G. Northrop, Adiabatic charged-particle motion. Rev. Geophys. 1, 283–304 (1963). doi:10.1029/RG001i003p00283

    Article  ADS  Google Scholar 

  • J. Ortner, B. Hultqvist, R.R. Brown et al., Cosmic noise absorption accompanying geomagnetic storm sudden commencements. J. Geophys. Res. 67, 4169 (1962)

    Article  ADS  Google Scholar 

  • L. Ozeke, I. Mann, Modeling the properties of guided poloidal alfvén waves with finite asymmetric ionospheric conductivities in a dipole field. J. Geophys. Res. (2004). doi:10.1029/2003JA010151

    Google Scholar 

  • L.G. Ozeke, I.R. Mann, Energization of radiation belt electrons by ring current ion driven ULF waves. J. Geophys. Res. 113, 2201 (2008). doi:10.1029/2007JA012468

    Article  Google Scholar 

  • T.P. O’Brien, K.R. Lorentzen, I.R. Mann et al., Energization of relativistic electrons in the presence of ULF power and MeV microbursts: evidence for dual ULF and VLF acceleration. J. Geophys. Res. 108, 1329 (2003)

    Article  Google Scholar 

  • C. Parks, Whistler observations during a magnetospheric sudden impulse. J. Geophys. Res. 80(34), 4738–4740 (1975)

    Article  ADS  Google Scholar 

  • K.L. Perry, M.K. Hudson, S.R. Elkington, Incorporating spectral characteristics of Pc5 waves into three-dimensional radiation belt modeling and the diffusion of relativistic electrons. J. Geophys. Res. 110, 3215 (2005). doi:10.1029/2004JA010760

    Article  Google Scholar 

  • V. Pilipenko, V. Belakhovsky, D. Murr, E. Fedorov, M. Engebretson, Modulation of total electron content by ULF Pc5 waves. J. Geophys. Res. Space Phys. 119, 4358–4369 (2014). doi:10.1002/2013JA019594

    Article  ADS  Google Scholar 

  • P.V. Ponomarenko, C.L. Waters, Transition of Pi2 ULF wave polarization structure from the ionosphere to the ground. Geophys. Res. Lett. 40, 1474–1478 (2013). doi:10.1002/grl.50271

    Article  ADS  Google Scholar 

  • I.J. Rae, E.F. Donovan, I.R. Mann et al., Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J. Geophys. Res. 110, A12211 (2005). doi:10.1029/2005JA01100

    Article  ADS  Google Scholar 

  • R. Rankin, K. Kabin, J.Y. Lu, I.R. Mann, R. Marchand, I.J. Rae, V.T. Tikhonchuk, E.F. Donovan, Magnetospheric field-line resonances: ground-based observations and modeling. J. Geophys. Res. 110, A10S09 (2005). doi:10.1029/2004JA010919

    Article  ADS  Google Scholar 

  • R. Rankin, J.C. Samson, V.T. Tikhonchuk, I. Voronkov, Auroral density fluctuations on dispersive field-line resonances. J. Geophys. Res. 104, 4399 (1999). doi:10.1029/1998JA900106

    Article  ADS  Google Scholar 

  • J. Ren, Q.G. Zong, Y.F. Wang, X.Z. Zhou, The interaction between ulf waves and thermal plasma ions at the plasmaspheric boundary layer during substorm activity. J. Geophys. Res. 120(2), 1133–1143 (2015). doi:10.1002/2014JA020766

    Article  Google Scholar 

  • J. Ren, Q.G. Zong, X.Z. Zhou, R. Rankin, Y.F. Wang, Interaction of ulf waves with different ion species: pitch angle and phase space density implications. J. Geophys. Res. 121(10), 9459–9472 (2016). doi:10.1002/2016JA022995

    Article  Google Scholar 

  • J. Ren, Q.G. Zong, X.Z. Zhou, R. Rankin, Y.F. Wang, S.J. Gu, Y.F. Zhu, Phase relationship between ulf waves and drift-bounce resonant ions: a statistical study. J. Geophys. Res. (2017) (submitted)

  • J.G. Roederer, Dynamics of Geomagnetically Trapped Radiation. Springer, New York (1970)

    Book  Google Scholar 

  • A.A. Samsonov, D.G. Sibeck, Large-scale flow vortices following a magnetospheric sudden impulse. J. Geophys. Res. Space Phys. 118, 3055–3064 (2013). doi:10.1002/jgra.50329

    Article  ADS  Google Scholar 

  • A.A. Samsonov, D.G. Sibeck, Y. Yu, Transient changes in magnetospheric-ionospheric currents caused by the passage of an interplanetary shock: Northward interplanetary magnetic field case. J. Geophys. Res. 115, A05207 (2010)

    ADS  Google Scholar 

  • T.E. Sarris, Estimates of the power per mode number of broadband ULF waves at geosynchronous orbit. J. Geophys. Res. Space Phys. 119, 5539–5550 (2014). doi:10.1002/2013JA019238

    Article  ADS  Google Scholar 

  • T.E. Sarris, X. Li, W. Liu, E. Argyriadis, A. Boudouridis, R. Ergun, Mode number calculations of ULF field-line resonances using ground magnetometers and THEMIS measurements. J. Geophys. Res. Space Phys. 118, 6986–6997 (2013). doi:10.1002/2012JA018307

    Article  ADS  Google Scholar 

  • T.E. Sarris, A.N. Wright, X. Li, Observations and analysis of Alfvén wave phase mixing in the Earth’s magnetosphere. J. Geophys. Res. 114, A03218 (2009). doi:10.1029/2008JA013606

    ADS  Google Scholar 

  • S. Schafer, K.H. Glassmeier, P.T.I. Eriksson, P.N. Mager, V. Pierrard, K.H. Fornaçon, L.G. Blomberg, Spatio-temporal structure of a poloidal Alfvén wave detected by Cluster adjacent to the dayside plasmapause. Ann. Geophys. 26, 1805–1817 (2008)

    Article  ADS  Google Scholar 

  • M. Schulz, L.J. Lanzerotti, Particle diffusion in the radiation belts, in physics and chemistry in space, vol. 7 (Springer, New York, 1974), p. 215

    Book  Google Scholar 

  • S. Schwartz, Hot flow anomalies near the earth’s bow shock. Adv. Space Res. 15(8–9), 107–116 (1995). doi:10.1016/0273-1177(94)00092-F

    Article  ADS  Google Scholar 

  • S.J. Schwartz, C.P. Chaloner, P.J. Christiansen, A.J. Coates, D.S. Hall, A.D. Johnstone, M.P. Gough, A.J. Norris, R.P. Rijnbeek, D.J. Southwood, An active current sheet in the solar wind. Nature 318(6043), 269–271 (1985)

    Article  ADS  Google Scholar 

  • A. Shah, C.L. Waters, M.D. Sciffer, F.W. Menk, Energization of outer radiation belt electrons during storm recovery phase. J. Geophys. Res. Space Phys. 121, 10845–10860 (2016). doi:10.1002/2016JA023245

    Article  ADS  Google Scholar 

  • X.C. Shen et al., Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations. J. Geophys. Res. Space Phys. (2015). doi:10.1002/2014JA020913

    Google Scholar 

  • X.C. Shen et al., Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse. J. Geophys. Res. Space Phys. (2017). doi:10.1002/2016JA023351

    Google Scholar 

  • Q.Q. Shi et al., THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events. J. Geophys. Res. Space Phys. (2013). doi:10.1029/2012JA017984

    Google Scholar 

  • Q.Q. Shi et al., Solar wind pressure pulse-driven magnetospheric vortices and their global consequences. J. Geophys. Res. Space Phys. (2014). doi:10.1002/2013JA019551

    Google Scholar 

  • D.W. Shields, E.A. Bering, A. Alaniz, S.E.M. Mason, W. Guo, R.L. Arnoldy, M.J. Engebretson, W.J. Hughes, D.L. Murr, L.J. Lanzerotti, C.G. Maclennan, Multistation studies of the simultaneous occurrence rate of pc 3 micropulsations and magnetic impulsive events. J. Geophys. Res. Space Phys. (2003). doi:10.1029/2002JA009397,1225

    Google Scholar 

  • D.G. Sibeck, A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations. J. Geophys. Res. 95(A4), 3755–3771 (1990). doi:10.1029/JA095iA04p03755

    Article  ADS  Google Scholar 

  • D.G. Sibeck, N.L. Borodkova, S.J. Schwartz, C.J. Owen, R. Kessel, S. Kokubun, R.P. Lepping, R. Lin, K. Liou, H. Luhr, R.W. McEntire, C.-I. Meng, T. Mukai, Z. Nemecek, G. Parks, T.D. Phan, S.A. Romanov, J. Safrankova, J.-A. Sauvaud, H.J. Singer, S.I. Solovyev, A. Szabo, K. Takahashi, D.J. Williams, K. Yumoto, G.N. Zastenker, Comprehensive study of the magnetospheric response to a hot flow anomaly. J. Geophys. Res. Space Phys. 104(A3), 4577–4593 (1999). doi:10.1029/1998JA900021

    Article  ADS  Google Scholar 

  • D.G. Sibeck, N.B. Trivedi, E. Zesta, R.B. Decker, H.J. Singer, A. Szabo, H. Tachihara, J. Watermann, Pressure-pulse interaction with the magnetosphere and ionosphere. J. Geophys. Res. 108(A2), 1095 (2003). doi:10.1029/2002JA009675

    Article  Google Scholar 

  • H.J. Singer, W.J. Hughes, C.T. Russell, Standing hydromagnetic waves observed by ISEE 1 and 2: Radial extent and harmonic. J. Geophys. Res. 87, 3519–3529 (1982)

    Article  ADS  Google Scholar 

  • N. Singh, J.L. Horwitz, Plasmasphere refilling: recent observations and modeling. J. Geophys. Res. 97, 1049–1079 (1992)

    Article  ADS  Google Scholar 

  • R.J. Sitar, J.B. Baker, C.R. Clauer, A.J. Ridley, J.A. Cumnock, V.O. Papitashvili, J. Spann, M.J. Brittnacher, G.K. Parks, Multi-instrument analysis of the ionospheric signatures of a hot flow anomaly occurring on July 24, 1996. J. Geophys. Res. Space Phys. 103(A10), 23357–23372 (1998). doi:10.1029/98JA01916

    Article  ADS  Google Scholar 

  • D. Southwood, J. Dungey, R. Etherington, Bounce resonant interaction between pulsations and trapped particles, planet. Space Sci. 17(3), 349–361 (1969)

    Article  ADS  Google Scholar 

  • D.J. Southwood, W.J. Hughes, Theory of hydromagnetic waves in the magnetosphere. Space Sci. Rev. 35, 301–366 (1983)

    Article  ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Charged particle behavior in low-frequency geomagnetic pulsations: 1. Transverse waves. J. Geophys. Res. 86, 5643–5655 (1981)

    Article  ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Charged particle behavior in low-frequency geomagnetic pulsations: 2. Graphical approach. J. Geophys. Res. 87, 1707–1710 (1982)

    Article  ADS  Google Scholar 

  • S.Y. Su, A. Konradi, T.A. Fritz, On propagation direction of ring current proton ULF waves observed by ATS 6 at 6.6 RE. J. Geophys. Res. 82(13), 1859–1868 (1977)

    Article  ADS  Google Scholar 

  • K. Takahashi, R.E. Denton, W. Kurth, C. Kletzing, J. Wygant, J. Bonnell, L. Dai, K. Min, C.W. Smith, R. MacDowall, Externally driven plasmaspheric ULF waves observed by the Van Allen Probes. J. Geophys. Res. Space Phys. 120, 526–552 (2015). doi:10.1002/2014JA020373

    Article  ADS  Google Scholar 

  • K. Takahashi, K.-H. Glassmeier, V. Angelopoulos, J. Bonnell, Y. Nishimura, H.J. Singer, C.T. Russell, Multisatellite observations of a giant pulsation event. J. Geophys. Res. (2011). doi:10.1029/2011JA016955

    Google Scholar 

  • K. Takahashi, P.R. Higbie, D.N. Baker, Azimuthal propagation and frequency characteristics of compressional Pc5 waves observed at geostationary orbit. J. Geophys. Res. 90, 1473 (1985)

    Article  ADS  Google Scholar 

  • K. Takahashi, R.W. McEntire, A.T.Y. Lui, T.A. Potemra, Ion flux oscillations associated with a radially polarised transverse Pc5 magnetic pulsation. J. Geophys. Res. 95, 3717 (1990)

    Article  ADS  Google Scholar 

  • K. Takahashi, N. Sato, J. Warnecke, H. Lühr, H.E. Spence, Y. Tonegawa, On the standing wave mode of giant pulsations. J. Geophys. Res. 97(10), 717 (1992)

    Google Scholar 

  • K. Takahashi, A.Y. Ukhorskiy, Solar wind control of pc5 pulsation power at geosynchronous orbit. J. Geophys. Res. 112, A11205 (2007)

    Article  ADS  Google Scholar 

  • T. Takeuchi, A. Araki, A. Viljanen, J. Watermann, Geomagnetic negative sudden impulses: interplanetary causes and polarization distribution. J. Geophys. Res. 107(A7), 1096 (2002). doi:10.1029/2001JA900152

    Article  Google Scholar 

  • L.C. Tan, S.F. Fung, X. Shao, Observation of magnetospheric relativistic electrons accelerated by Pc-5 ULF waves. Geophys. Res. Lett. 31, 14802 (2004)

    Article  ADS  Google Scholar 

  • L.C. Tan, X. Shao, A.S. Sharma, S.F. Fung, Relativistic electron acceleration by compressional-mode ULF waves: evidence from correlated cluster, Los Alamos National Laboratory spacecraft, and ground-based magnetometer measurements. J. Geophys. Res. 116, A07226 (2011). doi:10.1029/2010JA016226

    ADS  Google Scholar 

  • A.M. Tian et al., Dynamics of long-period ULF waves in the plasma sheet: Coordinated space and ground observations. J. Geophys. Res. 117, A03211 (2012). doi:10.1029/2011JA016551

    ADS  Google Scholar 

  • A.M. Tian et al., Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations. J. Geophys. Res. Space Phys. (2016). doi:10.1002/2016JA022459

    Google Scholar 

  • D.L. Turner, V. Angelopoulos, Y. Shprits, A. Kellerman, P. Cruce, D. Larson, Radial distributions of equatorial phase space density for outer radiation belt electrons. Geophys. Res. Lett. 39, L09101 (2012). doi:10.1029/2012GL051722

    ADS  Google Scholar 

  • D.L. Turner, X. Li, G.D. Reeves, H.J. Singer, On phase space density radial gradients of Earth’s outer-belt electrons prior to sudden solar wind pressure enhancements: Results from distinctive events and a superposed epoch analysis. J. Geophys. Res. 115, A01205 (2010). doi:10.1029/2009JA014423

    ADS  Google Scholar 

  • S.L. Ullaland, K. Wilhelm, J. Kangas et al., Electron precipitation associated with a sudden commencement of a geomagnetic storm. J. Atmos. Terr. Phys. 32, 1545 (1970)

    Article  ADS  Google Scholar 

  • C. Wang, R. Rankin, Q. Zong, Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere. J. Geophys. Res. Space Phys. 120, 2438–2451 (2015). doi:10.1002/2014JA020761

    Article  ADS  Google Scholar 

  • C. Wang, T.R. Sun, X.C. Guo, J.D. Richardson, Case study of nightside magnetospheric magnetic field response to interplanetaryshocks. J. Geophys. Res. 115, A10247 (2010). doi:10.1029/2010JA015451

    ADS  Google Scholar 

  • C.L. Waters, F.W. Menk, B.J. Fraser, The resonance structure of low latitude Pc3 geomagnetic pulsations. Geophys. Res. Lett. 18(12), 2293–2296 (1991)

    Article  ADS  Google Scholar 

  • J.A. Wild, T.K. Yeoman, C.L. Waters, Revised time-of-flight calculations for high-latitude geomagnetic pulsations using a realistic magnetospheric magnetic field model. J. Geophys. Res. 110, A11206 (2005)

    Article  ADS  Google Scholar 

  • B. Wilken, D.N. Baker, P.R. Higbie, T.A. Fritz, W.P. Olson, K.A. Pfitzer, Magnetospheric configuration and energetic particle effects associated with a SSC: A case study of the CDAW event on March 22, 1979. J. Geophys. Res. 91, 1459–1473 (1986)

    Article  ADS  Google Scholar 

  • B. Wilken, C.K. Goertz, D.N. Baker, P.R. Higbie, T.A. Fritz, The SSC on July 29, 1977 and its propagation within the magnetosphere. J. Geophys. Res. 87, 5901–5910 (1982)

    Article  ADS  Google Scholar 

  • D. Winterhalter, E. Smith, M. Burton, N. Murphy, D. McComas, The heliospheric plasma sheet. J. Geophys. Res. 99, 6667–6680 (1994)

    Article  ADS  Google Scholar 

  • A.N. Wright, G.J. Rickard, A numerical study of resonant absorption in a magnetohydrodynamic cavity driven by a broadband spectrum. Astrophys. J. 444, 458–470 (1995)

    Article  ADS  Google Scholar 

  • D.M. Wright, T.K. Yeoman, I.J. Rae, J. Storey, A.B. Stockton-Chalk, J.L. Roeder, K.J. Trattner, Ground-based and polar spacecraft observations of a giant (Pg) pulsation and its associated source mechanism. J. Geophys. Res. 106(A6), 10837–10852 (2001). doi:10.1029/2001JA900022

    Article  ADS  Google Scholar 

  • B. Yang, S.Y. Fu, Q.G. Zong et al., Numerical study on ULF waves in a dipole field excited by sudden impulse. Sci. Chin Ser. E-Tech. Sci. 51(10), 1665–1676 (2008)

    Article  MATH  Google Scholar 

  • B. Yang, Q.G. Zong, S.Y. Fu et al., Pitch angle evolutions of oxygen ions driven by storm time ULF poloidal standing waves. J. Geophys. Res. Space Phys. 116(A3), A03207 (2011)

    Article  ADS  Google Scholar 

  • B. Yang, Q.-G. Zong, S.Y. Fu, X. Li, A. Korth, H.S. Fu, C. Yue, H. Reme, The role of ulf waves interacting with oxygen ions at the outer ring current during storm times. J. Geophys. Res. (2011). doi:10.1029/2010JA015683

    Google Scholar 

  • B. Yang, Q. Zong, Y.F. Wang et al., Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere. J. Geophys. Res. 115, 2214 (2010a). doi:10.1029/2009JA014542

    Google Scholar 

  • B. Yang, Q.-G. Zong, Y.F. Wang, S.Y. Fu, P. Song, H.S. Fu, A. Korth, T. Tian, H. Reme, Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere. J. Geophys. Res. 115, A02214 (2010b). doi:10.1029/2009JA014542

    ADS  Google Scholar 

  • A.W. Yau, P.H. Beckwith, W.K. Peterson et al., Long-term (solar cycle) and seasonal variations of upflowing ionospheric ion events at DE-1 altitudes. J. Geophys. Res. 90, 6395–6407 (1985)

    Article  ADS  Google Scholar 

  • T.K. Yeoman, M. James, P.N. Mager, D.Y. Klimushkin, SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory. J. Geophys. Res. 117, A06231 (2012). doi:10.1029/2012JA017668

    ADS  Google Scholar 

  • T.K. Yeoman, D.M. Wright, ULF waves with drift resonance and drift-bounce resonance energy sources as observed in artificially-induced HF radar backscatter. Ann. Geophys. 19, 159–170 (2001). doi:10.5194/angeo-19-159-2001

    Article  ADS  Google Scholar 

  • C. Yue, Q. Zong, Y. Wang, I.I. Vogiatzis, Z. Pu, S. Fu, Q. Shi, Inner magnetosphere plasma characteristics in response to interplanetary shock impacts. J. Geophys. Res. 116, A11206 (2011). doi:10.1029/2011JA016736

    Article  ADS  Google Scholar 

  • C. Yue, Q.G. Zong, H. Zhang, Y.F. Wang, C.J. Yuan, Z.Y. Pu, S.Y. Fu, A.T.Y. Lui, B. Yang, C.R. Wang, Geomagnetic activity triggered by interplanetary shocks. J. Geophys. Res. 115, A00I05 (2010). doi:10.1029/2010JA015356

    ADS  Google Scholar 

  • X.Y. Zhang, Q.G. Zong, B. Yang et al., Numerical simulation of magnetospheric ULF waves excited by positive and negative impulses of solar wind dynamic pressure. Sci. China Ser. E-Tech. Sci. 52(10), 2886–2894 (2009)

    Article  MATH  Google Scholar 

  • X.Y. Zhang, Q.G. Zong, Y.F. Wang et al., ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. J. Geophys. Res. 115, A10221 (2010)

  • H.Y. Zhao et al., Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease. J. Geophys. Res. Space Phys. (2016). doi:10.1002/2015JA021646

    Google Scholar 

  • L.L. Zhao, H. Zhang, Q.-G. Zong, A statistical study on hot flow anomaly current sheets. J. Geophys. Res. Space Phys. 122(1), 235–248 (2017a). doi:10.1002/2016JA023319,2016JA023319

    Article  ADS  Google Scholar 

  • L.L. Zhao, H. Zhang, Q.G. Zong, Global ulf waves generated by a hot flow anomaly. Geophys. Res. Lett. (2017b). doi:10.1002/2017GL073249,2017GL073249

    Google Scholar 

  • L.L. Zhao, Q.G. Zong, H. Zhang, S. Wang, Case and statistical studies on the evolution of hot flow anomalies. J. Geophys. Res. Space Phys. 120(8), 6332–6346 (2015). doi:10.1002/2014JA020862,2014JA020862

    Article  ADS  Google Scholar 

  • X.-Z. Zhou et al., Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts. Geophys. Res. Lett. 42, 6199–6204 (2015). doi:10.1002/2015GL064988

    Article  ADS  Google Scholar 

  • X.-Z. Zhou, Z.-H. Wang, Q.-G. Zong, R. Rankin, M.G. Kivelson, X.-R. Chen, J.B. Blake, J.R. Wygant, C.A. Kletzing, Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations. J. Geophys. Res. 121, 3254–3263 (2016). doi:10.1002/2016JA022447

    Article  Google Scholar 

  • X. Zhu, M. Kivelson, Compressional ULF waves in the outer magnetosphere. 1. statistical study. J. Geophys. Res. 96, 19451–19467 (1991)

    Article  ADS  Google Scholar 

  • Q.G. Zong, Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys. Res. Lett. 34, L12105 (2007)

    Article  ADS  Google Scholar 

  • Q.G. Zong, Y.Q. Hao, Y.F. Wang, Ultra low frequency waves impact on radia tion belt energetic particles. Sci. China Ser. E-Tech. Sci. 52(12), 3698–3708 (2009a). doi:10.1007/s11431-009-0390-z

    Article  Google Scholar 

  • Q.G. Zong, Y.F. Wang, B. Yang et al., Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere. Sci. China Ser. E-Tech. Sci. 51(10), 1620–1625 (2008)

    Article  Google Scholar 

  • Q. Zong, Y. Wang, C. Yuan et al., Fast acceleration of “killer” electrons and energetic ions by inter-planetary shock stimulated ULF waves in the inner magnetosphere. Chin. Sci Bull. 56, 1188–1201 (2011). doi:10.1007/s11434-010-4308-8

    Article  Google Scholar 

  • Q.-G. Zong, Y.F. Wang, H. Zhang, S.Y. Fu, H. Zhang, C.R. Wang, C.J. Yuan, I. Vogiatzis, Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ulf waves. J. Geophys. Res. 117, A11206 (2012). doi:10.1029/2012JA018024

    Article  ADS  Google Scholar 

  • Q. Zong, B. Wilken, S. Fu, T. Fritz, Z. Pu, N. Hasebe, D. Williams, Ring current oxygen ions in the magnetosheath caused by magnetic storm. J. Geophys. Res. 106, 25–541 (2001)

    Article  Google Scholar 

  • Q.-G. Zong, H. Zhang, On magnetospheric response to solar wind discontinuities. J. Atmos. Solar Terr. Phys. 73(1), 1–4 (2011). doi:10.1016/j.jastp.2010.11.001

    Article  ADS  MathSciNet  Google Scholar 

  • Q.-G. Zong, X.-Z. Zhou, Y.F. Wang, X. Li, P. Song, D.N. Baker, T.A. Fritz, P.W. Daly, M. Dunlop, A. Pedersen, Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. 114, A10204 (2009b). doi:10.1029/2009JA014393

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Wenlong LIU, Dr. Quanqi SHI, Dr. Huishan FU, Dr. Yongfu WANG, Mr. Han LIU, Mr. Yin LIU and Jie REN for providing very useful materials. This work has been supported by National Natural Science Foundation of China (41421003 and 41627805). R. Rankin acknowledges financial support from the Canadian Space Agency and NSERC. We also acknowledge the ESA Cluster team for providing us data sets, and NASA CDAWeb (http://cdaweb.gsfc.nasa.gov/) for ACE, GOES, and OMNI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiugang Zong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Q., Rankin, R. & Zhou, X. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Mod. Plasma Phys. 1, 10 (2017). https://doi.org/10.1007/s41614-017-0011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-017-0011-4

Keywords

Navigation