Skip to main content
Log in

Numerical study on ULF waves in a dipole field excited by sudden impulse

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

A three-dimensional numerical model is employed to investigate ULF waves excited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the SI spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given SI lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magnitude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distribution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the SI affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the SI is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allan W, Poulter M E. ULF waves—their relationship to the structure of the Earth’s magnetosphere. Reports of Progress in Phys, 1992, 55: 533–598

    Article  Google Scholar 

  2. Dungey J W. Electrodynamics of the outer atmosphere. Phys Ionosphere, 1955, 229

  3. Chen L, Hasegawa A. A theory of long-period magnetic pulsations, 1, Steady state excitation of field line resonance. J Geophys Res, 1974, 79: 1024–1032

    Article  Google Scholar 

  4. Southwood D J. Some features of field line resonances in the magnetosphere. Planet Space Sci, 1974, 22: 483–491

    Article  Google Scholar 

  5. Samson J C, Jacobs J A, Rostoker G. Latitude-dependent characteristics of long-period geomagnetic micropulsations. J Geophys Res, 1971, 76: 3675–3683

    Article  Google Scholar 

  6. Samson J C, Rostoker G. Latitude-dependent characteristics of high-latitude Pc4 and Pc5 mircopulsations. J Geophys Res, 1972, 77: 6133–6144

    Article  Google Scholar 

  7. Kivelson M G, Southwood D J. Resonant ULF waves: A new interpretation. Geophys Res Lett, 1985, 12: 49–52

    Article  Google Scholar 

  8. Kivelson M G, Southwood D J. Coupling of global MHD eigenmodes to field line resonances. J Geophys Res, 1986, 91: 4345–4351

    Article  Google Scholar 

  9. Allan W, White S P, Poulter E M. Impulse-excited hydromagnetic cavity and field-line resonances in the magnetosphere. Planet Space Sci, 1986, 34: 371–385

    Article  Google Scholar 

  10. Inhester B. Numerical modeling of hydromagnetic wave coupling in the magnetosphere. J Geophys Res, 1987, 92: 4751–4756

    Article  Google Scholar 

  11. Zhu X, Kivelson M G. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J Geophys Res, 1988, 93: 8602–8612

    Article  Google Scholar 

  12. Lee D H, Lysak R L. Magnetospheric ULF wave coupling in the dipole model: The impulsive excitation. J Geophys Res, 1989, 94: 17097–17103

    Article  Google Scholar 

  13. Walker A D M, Ruohoniemi J M, Baker M K, et al. Spatial and temporal behavior of ULF pulsations observed by the Goose Bay HF radar. J Geophys Res, 1992, 97: 12187–12202

    Article  Google Scholar 

  14. Samson J C, Harrold B G, Ruohoniemi J M, et al. Field line resonances associated with MHD waveguides in the magnetosphere. Geophys Res Lett, 1992, 19: 441–444

    Article  Google Scholar 

  15. Wright A N. Dispersion and wave coupling in inhomogeneous MHD waveguides. J Geophys Res, 1994, 99: 159–167

    Article  Google Scholar 

  16. Wright A N, Rickard G J. ULF pulsations driven by magnetopause motions: Azimuthal phase characteristics. J Geophys Res, 1995, 100: 23703–23710

    Article  Google Scholar 

  17. Wright A N, Rickard G J. A numerical study of resonant absorption in a magnetohydrodynamic cavity driven by a broad band spectrum. Astrophys J, 1995b, 444: 458–470

    Article  Google Scholar 

  18. Mann I R, Chisham G, Bale S D. Multisatellite and ground-based observations of a tailward propagating Pc5 magnetospheric waveguide mode. J Geophys Res, 1998, 103: 4657–4670

    Article  Google Scholar 

  19. Mann I R, Wright A N, Mills K J, et al. Excitation of magnetospheric waveguide modes by magnetosheath flows. J Geophys Res, 1999, 104: 333–353

    Article  Google Scholar 

  20. Stephenson J, Walker A D M. HF radar observations of Pc5 ULF pulsations driven by the solar wind. Geophys Res Lett, 2002, 29: 1297, doi:10.1029/2001GL014291

    Article  Google Scholar 

  21. Kepko L, Spence H E, Singer H J. ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys Res Lett, 2002, 29: 1197, doi:10.1029/2001GL014405

    Article  Google Scholar 

  22. Kepko L, Spence H E. Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J Geophys Res, 2003, 108(A6): 1257, doi:10.1029/2002JA009676

    Article  Google Scholar 

  23. Greenwald R A, Walker A D M. Energetics of long period resonant hydromagnetic waves. Geophys Res Lett, 1980, 7: 745–748

    Article  Google Scholar 

  24. Crowley G, Hughes W J, Jones T B. Observational evidence of cavity modes in the Earth’s magnetosphere. J Geophys Res, 1987, 92: 12233–12240

    Article  Google Scholar 

  25. Rae I J, Donovan E F, Mann I R, et al. Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J Geophys Res, 2005, 110: A12211, doi:10.1029/2005JA011007

  26. Wang Y F, Fu S Y, Zong Q G, et al. Multi-spacecraft observations of ULF waves during the recovery phase of mangetic storm on October 30, 2003. Sci China Ser E-Tech Sci, 2008, 51(10): 1772–1785

    Article  Google Scholar 

  27. Hughes W J. The effect of the atmosphere and ionosphere on long period magnetospheric micropulsations. Planet Space Sci, 1974, 22: 1157–1172

    Article  Google Scholar 

  28. Hughes W J, Southwood D J. The screening of micropulsation signals by the atmosphere and ionosphere. J Geophys Res, 1976, 81: 3234–3247

    Article  Google Scholar 

  29. Elkington S R, Hudson M K, Chan A A. Acceleration of relativistic electron via drift-resonant interaction with toroidal-mode Pc-5 ulf oscillations. Geophys Res Lett, 1999, 26: 3273–3276

    Article  Google Scholar 

  30. Zong Q G, Zhou X Z, Li X, et al. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12,105

  31. Lee D H, Lysak R L. Monochromatic ULF wave excitation in the dipole magnetosphere. J Geophys Res, 1991, 96: 5811–5817

    Article  Google Scholar 

  32. Singer H J, Southwood D J, Walker R J, et al. Alfven wave resonances in a realistic magnetospheric magnetic field geometry. J Geophys Res, 1981, 86: 4589–4596

    Article  Google Scholar 

  33. Hededal C B. A numerical dipole model of the Earth’s Magnetosphere. Master Thesis. Copenhagen: University of Copenhagen, 2001

    Google Scholar 

  34. Tanskanen E, Pulkkinen T I, Koskinen H E J, et al. Substorm energy budget during low and high solar activity: 1997 and 1999 compared. J Geophys Res, 2002, 107(A6): 1086, doi:10.1029/2001JA900153

    Article  Google Scholar 

  35. Wygant J, Mozer F, Temerin M, et al. Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes. Geophys Res Lett, 1994, 21: 1739–1742

    Article  Google Scholar 

  36. Goldstein J, Hudson M K, Lotko W. Possible evidence of damped cavity mode oscillations stimulated by the January 1997 magnetic cloud event. Geophys Res Lett, 1999, 26: 3589–3592

    Article  Google Scholar 

  37. Eriksson P T I, Blomberg L G, Schaefer S, et al. On the excitation of ULF waves by solar wind pressure enhancements. Ann Geophys, 2006, 24: 3161–3172

    Article  Google Scholar 

  38. Lee D H, Kim K H, Denton R E, et al. Effects of ionospheric damping on MHD wave mode structure. Planet Space Sci, 2004, 56: e33–e36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SuiYan Fu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40425004 and 40528005) and the Major State Basic Research Development Program of China (973 Program) (Grant No. 2006CB806305)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Fu, S., Zong, Q. et al. Numerical study on ULF waves in a dipole field excited by sudden impulse. Sci. China Ser. E-Technol. Sci. 51, 1665–1676 (2008). https://doi.org/10.1007/s11431-008-0251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0251-1

Keywords

Navigation