Skip to main content
Log in

Design, construction, and offline calibration of ARPolar prototype for SXFEL facility

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

The polarization characteristics of photoelectrons are critical for free-electron laser (FEL) experiments. Several FEL facilities have operated an eTOF-alike polarimeter based on the angular distribution of photoelectrons. The purpose of this paper is to introduce the design, construction and offline test of the prototype angular resolved polarimeter (ARPolar-CORE) for the Shanghai Soft X-ray Facility (SXFEL). This paper describes the overall design of this instrument, covering the main chamber, detector assemblies, and electronics.

Methods

To validate the performance of the instrument, the detectors and electronics were tested offline and calibrated. Moreover, based on the measured pulse shape obtained from the offline tests, a comprehensive numerical analysis is presented to evaluate the performance of the instrument.

Results and conclusion

The results show that the fluctuation in the electron charges is less than 0.8% under the SXFEL working conditions, corresponding to a linear polarity of 0.988 ± 0.0175 for linearly and horizontally polarized FEL pulses. The analysis also indicates that a 0.16 eV mean square error is fully feasible for 645 eV FEL pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. J.B. Kortright, D.D. Awschalom, J. Stöhr, S.D. Bader, Y.U. Idzerda, S.S.P. Parkin, I.K. Schuller, H.-C. Siegmann, Research frontiers in magnetic materials at soft X-ray synchrotron radiation facilities. J. Magn. Magn. Mater. 207(1–3), 7–44 (1999). https://doi.org/10.1016/S0304-8853(99)00485-0

    Article  ADS  Google Scholar 

  2. P.K. Maroju, C.. Di. Grazioli, M. Fraia, M. Moioli, D. Ertel, H. Ahmadi, O. Plekan, P. Finetti, E. Allaria, L.. De. Giannessi, G. Ninno, S. Spampinati, A.A. Lutman, R.J. Squibb, R. Feifel, P. Carpeggiani, M. Reduzzi, T. Mazza, M. Meyer, S. Bengtsson, N. Ibrakovic, E.R. Simpson, J. Mauritsson, T. Csizmadia, M. Dumergue, S. Kühn, N.G. Harshitha, D. You, K. Ueda, M. Labeye, J.E. Bækhøj, K.J. Schafer, E.V. Gryzlova, A.N. Grum-Grzhimailo, K.C. Prince, C. Callegari, G. Sansone, Analysis of two-color photoelectron spectroscopy for attosecond metrology at seeded free-electron lasers. New J. Phys. 23(4), 043046 (2021). https://doi.org/10.1088/1367-2630/abef29

    Article  ADS  Google Scholar 

  3. M. Ilchen, G. Hartmann, E.V. Gryzlova, A. Achner, E. Allaria, A. Beckmann, M. Braune, J. Buck, C. Callegari, R.N. Coffee, R. Cucini, M.. De. Danailov, A. Fanis, A. Demidovich, E. Ferrari, P. Finetti, L. Glaser, A. Knie, A.O. Lindahl, O. Plekan, N. Mahne, T. Mazza, L. Raimondi, E. Roussel, F. Scholz, J. Seltmann, I. Shevchuk, C. Svetina, P. Walter, M. Zangrando, J. Viefhaus, A.N. Grum-Grzhimailo, M. Meyer, Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon. Nat. Commun. 9(1), 4659 (2018). https://doi.org/10.1038/s41467-018-07152-7

    Article  ADS  Google Scholar 

  4. A.A. Lutman, J.P. MacArthur, M. Ilchen, A.O. Lindahl, J. Buck, R.N. Coffee, G.L. Dakovski, L. Dammann, Y. Ding, H.A. Dürr, L. Glaser, J. Grünert, G. Hartmann, N. Hartmann, D. Higley, K. Hirsch, Y.I. Levashov, A. Marinelli, T. Maxwell, A. Mitra, S. Moeller, T. Osipov, F. Peters, M. Planas, I. Shevchuk, W.F. Schlotter, F. Scholz, J. Seltmann, J. Viefhaus, P. Walter, Z.R. Wolf, Z. Huang, H.-D. Nuhn, Polarization control in an X-ray free-electron laser. Nat. Photonics 10(7), 468–472 (2016). https://doi.org/10.1038/nphoton.2016.79

    Article  ADS  Google Scholar 

  5. E. Roussel, E. Allaria, C. Callegari, M. Coreno, R. Cucini, S.D. Mitri, B. Diviacco, E. Ferrari, P. Finetti, D. Gauthier, G. Penco, L. Raimondi, C. Svetina, M. Zangrando, A. Beckmann, L. Glaser, G. Hartmann, F. Scholz, J. Seltmann, I. Shevchuk, J. Viefhaus, L. Giannessi, Polarization characterization of soft X-ray radiation at FERMI FEL-2. Photonics (2017). https://doi.org/10.3390/photonics4020029

    Article  Google Scholar 

  6. H. Deng, T. Zhang, L. Feng, C. Feng, B. Liu, X. Wang, T. Lan, G. Wang, W. Zhang, X. Liu, J. Chen, M. Zhang, G. Lin, M. Zhang, D. Wang, Z. Zhao, Polarization switching demonstration using crossed-planar undulators in a seeded free-electron laser. Phys. Rev. Spec. Top. Accel. Beams 17(2), 020704 (2014). https://doi.org/10.1103/PhysRevSTAB.17.020704

    Article  ADS  Google Scholar 

  7. E. Ferrari, E. Allaria, J.. De. Buck, G. Ninno, B. Diviacco, D. Gauthier, L. Giannessi, L. Glaser, Z. Huang, M. Ilchen, G. Lambert, A.A. Lutman, B. Mahieu, G. Penco, C. Spezzani, J. Viefhaus, Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators. Sci. Rep. 5(1), 13531 (2015). https://doi.org/10.1038/srep13531

    Article  ADS  Google Scholar 

  8. E. Allaria, B. Diviacco, C. Callegari, P. Finetti, B. Mahieu, J. Viefhaus, M.. De. Zangrando, G. Ninno, G. Lambert, E. Ferrari, J. Buck, M. Ilchen, B. Vodungbo, N. Mahne, C. Svetina, C.. Di. Spezzani, S. Mitri, G. Penco, M. Trovó, W.M. Fawley, P.R. Rebernik, D. Gauthier, C. Grazioli, M. Coreno, B. Ressel, A. Kivimäki, T. Mazza, L. Glaser, F. Scholz, J. Seltmann, P. Gessler, J.. De. Grünert, A. Fanis, M. Meyer, A. Knie, S.P. Moeller, L. Raimondi, F. Capotondi, E. Pedersoli, O. Plekan, M.B. Danailov, A. Demidovich, I. Nikolov, A. Abrami, J. Gautier, J. Lüning, P. Zeitoun, L. Giannessi, Control of the polarization of a vacuum-ultraviolet, high-gain. Free-electron laser. Phys. Rev. X 4(4), 041040 (2014). https://doi.org/10.1103/PhysRevX.4.041040

    Article  Google Scholar 

  9. Z. Zhao, D. Wang, Q. Gu, L. Yin, M. Gu, Y. Leng, B. Liu, Status of the SXFEL facility. Appl. Sci. 7(6), 607 (2017). https://doi.org/10.3390/app7060607

    Article  Google Scholar 

  10. N. Huang, H. Deng, B. Liu, D. Wang, Z. Zhao, Features and futures of X-ray free-electron lasers. Innov. 2(2), 100097 (2021). https://doi.org/10.1016/j.xinn.2021.100097

    Article  Google Scholar 

  11. J. Yan, N. Huang, H. Deng, B. Liu, D. Wang, Z. Zhao, First observation of laser-beam interaction in a dipole magnet. Adv. Photonics (2021). https://doi.org/10.1117/1.AP.3.4.045003

    Article  Google Scholar 

  12. J. Yan, Z. Gao, Z. Qi, K. Zhang, K. Zhou, T. Liu, S. Chen, C. Feng, C. Li, L. Feng, T. Lan, W. Zhang, X. Wang, X. Li, Z. Jiang, B. Wang, Z. Wang, D. Gu, M. Zhang, H. Deng, Q. Gu, Y. Leng, L. Yin, B. Liu, D. Wang, Z. Zhao, Self-amplification of coherent energy modulation in seeded free-electron lasers. Phys. Rev. Lett. 126(8), 084801 (2021). https://doi.org/10.1103/PhysRevLett.126.084801

    Article  ADS  Google Scholar 

  13. P. Finetti, E. Allaria, B. Diviacco, C. Callegari, B. Mahieu, J. Viefhaus, M. Zangrando, G. De Ninno, G. Lambert, E. Ferrari, J. Buck, M. Ilchen, B. Vodungbo, N. Mahne, C. Svetina, C. Spezzani, S. Di Mitri, G. Penco, M. Trovò, W.M. Fawley, P. Rebernik, D. Gauthier, C. Grazioli, M. Coreno, B. Ressel, A. Kivimäki, T. Mazza, L. Glaser, F. Scholz, J. Seltmann, P. Gessler, J. Grünert, A. De Fanis, M. Meyer, A. Knie, S.P. Moeller, L. Raimondi, F. Capotondi, E. Pedersoli, O. Plekan, M. Danailov, A. Demidovich, I. Nikolov, A. Abrami, J.L. Gautier, J.üning, P. Zeitoun, L. Giannessi. Polarization measurement of free electron laser pulses in the VUV generated by the variable polarization source FERMI. In: Hau-Riege, S.P. Moeller, S.P. Yabashi, M. (eds.) X-Ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications II, vol. 9210, p. 92100 (2014). https://doi.org/10.1117/12.2062717. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2062717

  14. T. Mazza, M. Ilchen, A.J. Rafipoor, C. Callegari, P. Finetti, O. Plekan, K.C. Prince, R. Richter, M.B. Danailov, A.. De. Demidovich, G. Ninno, C. Grazioli, R. Ivanov, N. Mahne, L. Raimondi, C. Svetina, L. Avaldi, P. Bolognesi, M. Coreno, P.. Di. O’Keeffe, M. Fraia, M. Devetta, Y. Ovcharenko, T. Möller, V. Lyamayev, F. Stienkemeier, S. Düsterer, K. Ueda, J.T. Costello, A.K. Kazansky, N.M. Kabachnik, M. Meyer, Determining the polarization state of an extreme ultraviolet free-electron laser beam using atomic circular dichroism. Nat. Commun. 5(1), 3648 (2014). https://doi.org/10.1038/ncomms4648

    Article  ADS  Google Scholar 

  15. G. Hartmann, A.O. Lindahl, A. Knie, N. Hartmann, A.A. Lutman, J.P. MacArthur, I. Shevchuk, J. Buck, A. Galler, J.M. Glownia, W. Helml, Z. Huang, N.M. Kabachnik, A.K. Kazansky, J. Liu, A. Marinelli, T. Mazza, H.-D. Nuhn, P. Walter, J. Viefhaus, M. Meyer, S. Moeller, R.N. Coffee, M. Ilchen, Circular dichroism measurements at an x-ray free-electron laser with polarization control. Rev. Sci. Instrum. 87(8), 083113 (2016). https://doi.org/10.1063/1.4961470

    Article  ADS  Google Scholar 

  16. N. Hartmann, G. Hartmann, R. Heider, M.S. Wagner, M. Ilchen, J. Buck, A.O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, A.A. Lutman, A. Marinelli, T. Maxwell, A.A. Miahnahri, S.P. Moeller, M. Planas, J. Robinson, A.K. Kazansky, N.M. Kabachnik, J. Viefhaus, T. Feurer, R. Kienberger, R.N. Coffee, W. Helml, Attosecond time-energy structure of X-ray free-electron laser pulses. Nat. Photonics 12(4), 215–220 (2018). https://doi.org/10.1038/s41566-018-0107-6

    Article  ADS  Google Scholar 

  17. J. Laksman, J. Buck, L. Glaser, M. Planas, F. Dietrich, J. Liu, T. Maltezopoulos, F. Scholz, J. Seltmann, G. Hartmann, M. Ilchen, W. Freund, N. Kujala, J. Viefhaus, J. Grünert, Commissioning of a photoelectron spectrometer for soft X-ray photon diagnostics at the European XFEL. J. Synchrotron Radiat. 26(4), 1010–1016 (2019). https://doi.org/10.1107/S1600577519003552

    Article  Google Scholar 

  18. P. Walter, A. Kamalov, A. Gatton, T. Driver, D. Bhogadi, J.-C. Castagna, X. Cheng, H. Shi, R. Obaid, J. Cryan, W. Helml, M. Ilchen, R.N. Coffee, Multi-resolution electron spectrometer array for future free-electron laser experiments. J. Synchrotron Radiat. 28(5), 1364–1376 (2021). https://doi.org/10.1107/S1600577521007700

    Article  Google Scholar 

  19. S.T. Xiang, H. Liang, A time and charge measurement board for muon tomography of high-z materials. Nucl. Sci. Tech. 28(3), 40 (2017). https://doi.org/10.1007/s41365-017-0183-1

    Article  Google Scholar 

  20. S.B. Liu, C.Q. Feng, L.F. Kang, Q. An, The non-gated charge-to-time converter for TOF detector in BES III. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 621(1–3), 513–518 (2010). https://doi.org/10.1016/j.nima.2010.06.199

    Article  ADS  Google Scholar 

  21. T. Ishikawa, Y. Takeda, Y. Honda, Y. Inoue, H. Kanda, S. Kido, Y. Matsumura, M. Miyabe, I. Nagasawa, H. Shimizu, T. Takeda, A.O. Tokiyasu, Y. Tsuchikawa, H. Yamazaki, Charge-to-time converting leading-edge discriminator for plastic-scintillator signals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 875(September), 193–200 (2017). https://doi.org/10.1016/j.nima.2017.09.040

    Article  ADS  Google Scholar 

  22. Q. Zhang, B. Deng, Y. Chen, B. Liu, S. Chen, J. Fan, L. Feng, H. Deng, B. Liu, D. Wang, Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility. J. Instrum. 12(10), 10003 (2017). https://doi.org/10.1088/1748-0221/12/10/T10003

    Article  Google Scholar 

  23. D. Dill, A.F. Starace, S.T. Manson, Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions. Phys. Rev. A 11(5), 1596–1606 (1975). https://doi.org/10.1103/PhysRevA.11.1596

    Article  ADS  Google Scholar 

  24. Z. Liu, B. Deng, H. Deng, B. Liu, Numerical study of transverse position monitor and compensation for x-ray polarization diagnosis (2021)

  25. R. Kersevan, M. Ady, Recent developments of Monte-Carlo codes Molflow+ and Synrad+, in 10th International Particle Accelerator Conference (2019). https://doi.org/10.18429/JACoW-IPAC2019-TUPMP037

  26. A.V. Rodionov, Calculation of a supersonic gas jet exhausting into vacuum from a nozzle with an inclined exit. Fluid Dyn. 17(3), 483–485 (1982). https://doi.org/10.1007/BF01091294

  27. HAMAMATSU F4655-10. https://www.hamamatsu.com/resources/pdf/etd/MCP_assembly_TMCP0003E.pdf

  28. B. Deng, J. Yan, Q. Zhang, Y. Sang, H. Deng, Proposal of X-ray absorption spectroscopy and magnetic circular dichroism using broadband free-electron lasers. J. Synchrotron Radiat. 26(1), 1–10 (2019). https://doi.org/10.1107/S1600577518015175

    Article  Google Scholar 

  29. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)

    Article  ADS  Google Scholar 

  30. D. Cullen, J.H. Hubbell, L. Kissel, the evaluated photon data library. Office of Scientific & Technical Information Technical Reports (1997). https://doi.org/10.2172/295438

  31. S. Reiche, GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 429(1–3), 243–248 (1999). https://doi.org/10.1016/S0168-9002(99)00114-X

    Article  ADS  Google Scholar 

  32. Y. Lin, Application of the charge to time conversion technique in radiation spectroscopy. Prog. Nucl. Sci. Technol. 1, 206–209 (2011). https://doi.org/10.15669/pnst.1.206

  33. 50 MHz to 4 . 0 GHz RF / IF Gain Block. https://www.analog.com/cn/products/adl5611.html

  34. 0.5 dB LSB GaAs MMIC 6-Bit Digital Positive Control Attenuator, DC—3.8 GHz. https://www.analog.com/en/products/hmc472a.html

  35. C. Parl, H. Larue, M. Streun, K. van Ziemons, S. Waasen, Fast charge to pulse width converter for monolith PET detector. IEEE Trans. Nucl. Sci. 59(5), 1809–1814 (2012). https://doi.org/10.1109/TNS.2012.2209128

  36. TLV350x 4.5-ns , Rail-to-Rail , High-Speed Comparator in Microsize Packages. https://www.ti.com.cn/product/cn/TLV3501

  37. Y. Yang, S. Liu, T. Zhao, B. Yan, P. Wang, Y. Yu, X. Lei, L. Yang, K. Wen, M. Qi, Y. Heng, Single electron counting using a dual MCP assembly. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 830, 438–443 (2016). https://doi.org/10.1016/j.nima.2016.06.035

    Article  ADS  Google Scholar 

  38. K. Ooka, B. Dunn, J.D. Mackenzie, Secondary electron emission from glass and its practical applications. J. Non-Cryst. Solids 12(1), 1–17 (1973). https://doi.org/10.1016/0022-3093(73)90051-3

    Article  ADS  Google Scholar 

  39. D.A. Dahl, J.E. Delmore, A.D. Appelhans, Simion pc/ps2 electrostatic lens design program. Rev. Sci. Instrum. 61(1), 607–609 (1990)

    Article  ADS  Google Scholar 

  40. G. Zhangfeng, D. Haixiao, L. Bo, W. Dong, Polarization control of shanghai soft x-ray free-electron laser facility. Chin. J. Lasers 47(5), 1–8 (2020)

    Google Scholar 

  41. Z.Y. Zhu, Z.T. Zhao, D. Wang, Z. Liu, R.X. Li, L.X. Yin, Z.H. Yang. SCLF: An 8-GEV CW SCRF linac-based x-ray FEL facility in Shanghai. in Proceedings of the 38th International Free-Electron Laser Conference, FEL 2017 (April), pp. 182–184 (2017). https://doi.org/10.18429/JACoW-FEL2017-MOP055

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFE0103100), the National Natural Science Foundation of China (12125508, 11935020), Program of Shanghai Academic/Technology Research Leader (21XD14 04100), and Shanghai Pilot Program for Basic Research – Chinese Academy of Science, Shanghai Branch (JCYJ-SHFY-2021-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixiao Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Deng, B., Zhang, Q. et al. Design, construction, and offline calibration of ARPolar prototype for SXFEL facility. Radiat Detect Technol Methods 6, 214–226 (2022). https://doi.org/10.1007/s41605-022-00329-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00329-1

Keywords

Navigation