Skip to main content
Log in

Preliminary assessment of natural radioactivity and associated radiation hazards in a phosphate mining site in southern area of Togo

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Introduction

Because of the increasing use of phosphate in industries worldwide, especially in Togo, it is interesting to investigate the potential radioactivity exposure of phosphate ores, especially in the one being exploring in Togo nowadays.

Material and methods

The contents of natural radionuclides (40K, 226Ra, 232Th, 235U and 238U) were assessed in phosphate soil samples from Kpogamé, Dagbati and Kpémé in the maritime region of Togo by using gamma spectrometry-based Broad Energy Germanium detector (BEGe6530). Since no study was made prior to the exploitation, the samples from the control area of Anfoin-Kpota far away from the three others were considered as reference.

Results and discussion

The results are discussed and compared with the data from other countries. The activity concentration of 40K, 226Ra, 232Th, 235U and 238U are between (59.45 and 129.99), (20.19 and 779.93), (16.81 and 121.42), (2.26 and 52.03) and (16.66 and 841.14) Bq kg−1, respectively. The values obtained shows that the exploitation sites (Dagbati and Kpogamé) and treatment site (Kpémé) have a very high level of radioactivity than the control area (Anfoin-Kpota). The Kpogamé and Dagbati exploitation and Kpémé waste discharging phosphate deposit sites were found to have higher activity concentration than many others exploited phosphate sedimentary deposits around the world. The average annual effective dose of the above studied sites is 0.36, 0.24 and 0.48 mSv year−1, respectively. The value related to the discharge waste site is about 2% of the 1.0 mSv year−1 recommended by the International Commission on Radiological Protection as the maximum annual dose to the public.

Conclusions

The obtained result of both radioactivity and radiological level in the studied areas will be considered as a pre-operational baseline to estimate the possible radiological impacts due to mining and processing phosphate industrial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.F. Beyala Ateba, Ateba P. Owono, G.H. Ben-Bolie, Abiama P. Ele, C.R. Abega, S. Mvondo, Natural background dose measurements in south Cameroon. Radiat. Prot. Dosim. 140(1), 81–88 (2010)

    Article  Google Scholar 

  2. E.J.M. Nguelem, M.M. Ndontchueng, O. Motapon, S.C.J. Guembou, E. Darko, Radiological monitoring and statistical approach of primordial and anthropogenic radionuclides in surface soil of Mami-water site in the Western Cameroon. Environ. Earth Sci. 76, 612 (2017). https://doi.org/10.1007/s12665-017-6951-8

    Article  Google Scholar 

  3. D.R. Rangaswamy, M.C. Srilatha, C. Ningappa, E. Srinivasa, J. Sannappa, Measurement of natural radioactivity and radiation hazards assessment in rock samples of Ramanagara and Tumkur districts, Karnataka, India. Environ. Earth Sci. 75, 373 (2016). https://doi.org/10.1007/s12665-015-5195-8

    Article  Google Scholar 

  4. United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). Report to the General Assembly. Annex B: Exposures from Natural Radiation Sources (2000)

  5. M.M. Ndontchueng, E.J.M. Nguelem, O., Motapon, R.L. Njinga, A. Simo, J.C.S. Guembou, B. Yimele (2015) Radiological hazards in soil from the bauxite deposits sites in Dschang Region of Cameroon. Br. J. Appl. Sci. Technol. 5(4). ISSN: 2231-0843

  6. M.M. Ndontchueng, E.J.M. Nguelem, R.L. Njinga, A. Simo, J.C.S. Guembou (2014) Gamma Emitting Radionuclides in Soils from Selected Areas in DOUALA-BASSA Zone, Littoral Region of Cameroon. Hindawi Publishing Corporation, vol. 2014. ISRN Spectroscopy. Article ID 245125. http://dx.doi.org/10.1155/2014/245125

  7. A. Baeza, J.A. Corbacho, J. Guillén, A. Salas, J.C. Mora, Analysis of the different source terms of natural radionuclides in a river affected by NORM (naturally occurring radioactive materials) activities. Chemosphere 83(7), 933–940 (2011). https://doi.org/10.1016/j.chemosphere.2011.02.042

    Article  ADS  Google Scholar 

  8. IAEA TRS 419 (2003) Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. http://www-pub.iaea.org/MTCD/publications/PDF/TRS419_web.pdf

  9. O. Rosskopfova, M. Galambos, P. Rajec, Determination of 63Ni in the low level solid radioactive waste. J. Radioanal. Nucl. Chem. 289, 251–256 (2011). https://doi.org/10.1007/s10967-011-1071-5

    Article  Google Scholar 

  10. G. Xhixha, M. Baldoncini, I. Callegari, T. Colonna, F. Hasani, F. Mantovani, F. Shala, V. Strati, Kaceli M. Xhixha, A century of oil and gas exploration in Albania: assessment of Naturally Occurring Radioactive Materials (NORMs). Chemosphere 139, 30–39 (2015). https://doi.org/10.1016/j.chemosphere.2015.05.018

    Article  ADS  Google Scholar 

  11. E. Agbalagba, R. Onoja, Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. J. Environ. Radioact. 102(7), 667–671 (2011)

    Article  Google Scholar 

  12. E.O. Agbalagba, G.O. Avwiri, Y.E. Chad-Umoreh, Gamma-spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria. J. Environ. Radioact. 109, 64–70 (2012). https://doi.org/10.1016/j.jenvrad.2011.10.012

    Article  Google Scholar 

  13. European Council for Nuclear Research (ECNR), Safety Guide for Experiments at European Council for Nuclear Research. Part III-Advice 40, Ionizing Radiation (1995)

  14. M.M. Ndontchueng, R.L. Njinga, E.J.M. Nguelem, A. Simo, Analysis of 238U, 235U, 137Cs, and 133Xe in soils from two campuses in university of douala-cameroon. Appl. Radiat. Isot. 86, 85–89 (2014)

    Article  Google Scholar 

  15. E.J.M. Nguelem, M.M. Ndontchueng, O. Motapon, E.O. Darko, A. Simo, Determination of 226Ra. 232Th. 40K and 235U in soil samples from bauxite core deposits in western Cameroon. Radioprotection 51(3), 199–205 (2016). https://doi.org/10.1051/radiopro/2016029

    Article  Google Scholar 

  16. Saïdou, Mesure de la Radioactivité naturelle environnementale par Spectrométries γ et β et calcul de la dose au publique: application à la région uranifère de poli. Thèse de doctorat; Université de Douala. Faculté des sciences. Centre de Physique Moléculaire Atomique Et Optique quantique (CEPAMOQ) (2008)

  17. P. Manigandan, C.B. Shekar, Evaluation of radionuclides in the terrestrial environment of Western Ghats. J. Radiat. Res. Appl. Sci. 7(3), 310–316 (2014). https://doi.org/10.1016/j.jrras.2014.04.001

    Article  Google Scholar 

  18. MERF, National Report on Cadmium and Lead Environment Directorate (Ministry of Environment and Forest Resources, Togo, 2005)

    Google Scholar 

  19. E. Bouka, P. Lawson-Evi, K. Eklu-Gadegbeku, K. Aklikokou, M. Gbeassor, Heavy metals concentration in soil, water, Manihot esculenta tuber and Oreochromis niloticus around phosphates exploitation area in Togo. Res. J. Environ. Toxicol. 7, 18–28 (2013). https://doi.org/10.3923/rjet.2013.18.28

    Article  Google Scholar 

  20. G.H. McClellan, S.J.V. Van Kauwenbergh (1990) Mineralogy of sedimentary apatite, in Phosphorite research and development, ed. by A.J.G. Notholt, I. Jarvis, Geological Society of London Special Publication, vol. 52, pp. 23–31. https://doi.org/10.1144/GSL.SP.1990.052.01.03

  21. C.J. Guembou Shouop, M. Ndontchueng Moyo, G. Chene, E.J. Nguelem Mekongtso, O. Motapon, D. Strivay, Assessment of natural radioactivity and associated radiation hazards in sand building material used in Douala Littoral-Region of Cameroon, using gamma spectrometry. Environ. Earth Sci. 76, 164 (2017). https://doi.org/10.1007/s12665-017-6474-3

    Article  Google Scholar 

  22. K. Dabayneh, Radioactivity measurements in different types of fabricated building materials used in Palestine. Arab. J. Nucl. Sci. Appl. 40(3), 207 (2007)

    Google Scholar 

  23. G.S.C. Joel, S. Penabei, M.M. Ndontchueng, G. Chene, E.J.N. Mekontso, A.N. Ebongue, M. Ousmanou, S. David, Precision measurement of radioactivity in gamma-rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison techniques: application to the soil measurement. MethodsX 4, 42–54 (2017). https://doi.org/10.1016/j.mex.2016.12.003

    Article  Google Scholar 

  24. S.C.J. Guembou, M.N. Moyo, E.J.N. Mekongtso, O. Motapon, D. Strivay, Monte Carlo method for Gamma spectrometry based on GEANT4 toolkit: efficiency calibration of BE6530 detector”. J. Environ. Radioact. 189, 109–119 (2018). https://doi.org/10.1016/j.jenvrad.2018.03.015

    Article  Google Scholar 

  25. R. Venkataraman, F. Bronson, V. Atrashkevich, M. Field, B. M. Young (2003) Improved detector response characterization method in ISOCS and LabSOCS, in Methods and Applications of Radioanalytical Chemistry (MARC VI) Conference

  26. A.M. Ababneh, M.M. Eyadeh, Coincidence summing corrections in HPGe gamma-ray spectrometry for Marinelli-beakers geometry using peak to total (P/T) calibration. J. Radiat. Res. Appl. Sci. 8(3), 323–327 (2015). https://doi.org/10.1016/j.jrras.2015.05.003

    Article  Google Scholar 

  27. M. Aoun, O. El Samad, Khozam R. Bou, R. Lobinski, Assessment of committed effective dose due to the ingestion of 210Po and 210Pb in consumed Lebanese fish affected by a phosphate fertilizer plant. J. Environ. Radioact. 140, 25–29 (2015)

    Article  Google Scholar 

  28. J. Beretka, P.J. Mathew, Natural radioactivity of Australian building materials industrial wastes and by-products. Health Phys. 48, 87–95 (1985)

    Article  Google Scholar 

  29. A.G.E. Abbady, M.A. Uosif, A. El-Taher, Natural radioactivity and dose rate assessment of phosphate rocks from Wadi El-Mashash and El-Mahamid mines. Egypt. J. Environ. Radioact. 84(1), 65–78 (2005). https://doi.org/10.1016/j.jenvrad.2005.04.003

    Article  Google Scholar 

  30. A. Abbady, A.M. El-Arabi, A.G.E. Abbady, S. Taha, Gamma ray measurements of natural radioactivity in cultivated and reclaimed soil, Upper Egypt, in International Conference on Radioecology and Environmental Radioactivity, Norway, 15–20 June 2008. https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/092/38092971.pdf

  31. R.J. Guimond (1990) Radium in fertilizers. The Environmental Behavior of Radium. Technical (Vienna: International Atomic Energy Agency) Report, vol 310, pp. 113–128

  32. M. Ivanovich, R.S. Harmon, Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd edn. (Clarendon Press, Oxford, 1982)

    Google Scholar 

  33. A.E. Khater, R.H. Higgy, M. Pimpl, Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposit, Egypt. J. Environ. Radioact. 55, 255–267 (2001). https://doi.org/10.1016/S0265-931X(00)00193-4

    Article  Google Scholar 

  34. M.A.M. Uosif, A. El-Taher, Radiological assessment of abu-tartur phosphate, Western Desert Egypt. Radiat. Prot. Dosimetry. 130(2), 228–235 (2008)

    Article  Google Scholar 

  35. K. Khan, H.M. Khan, M. Tufail, A.J.A.H. Khatibeh, N. Ahmad, Radiometric analysis of Hazara phosphate rock and fertilizers in Pakistan. J. Environ. Radioact. 35(1), 7–84 (1998)

    Google Scholar 

  36. M. Olszewska-Wasiolek, Estimates of the occupational radiological hazards in phosphate fertilizers industry in Poland. Radiat. Prot. Dosim. 58, 269–276 (1995). https://doi.org/10.1093/oxfordjournals.rpd.a082624

    Article  Google Scholar 

  37. A.K. Sam, M.M.O. Ahmad, F.A. El Khngi, Y.O. El Nigumi, E. Holm, Radiological and assessment of Uro and Kurun rock phosphates. J. Environ. Radioact. 24, 65–75 (1999)

    Article  Google Scholar 

  38. M.M. Makweba, E. Holm, The natural radioactivity of the rock phosphates, phosphatic products and their environmental implications. Sci. Total Environ. 133, 99–110 (1993)

    Article  ADS  Google Scholar 

  39. J.P. Bolivar, R. García-Tenorio, M. García León, Fluxes and distribution of Natural Radionuclides in the Production and Use of Fertilizers. Appl. Radiat. Isot. 46, 717–718 (1995)

    Article  Google Scholar 

  40. J.P. Bolívar, R. García-Tenorio, J.L. Mas, Radioactivity of phosphogypsum in the south–west of Spain. Radiat. Prot. Dosim. 76, 185–189 (1998)

    Article  Google Scholar 

  41. C. Dueñas, M.C. Fernández, S. Cañete, M. Pérez, Radiological impacts of natural radioactivity from phosphogypsum piles in Huelva (Spain). Radiat. Meas. 45(2), 242–246 (2010)

    Article  Google Scholar 

  42. ICRP PUBLICATION 60, Recommendations of the International Commission on Radiological Protection. Ann. ICRP 21(1–3) (1991)

Download references

Acknowledgements

The authors wish to express their deep appreciation and gratitude to the IAEA for awarding the fellowship, without which this work would have been impossible; and the Director General of the National Radiation Protection Agency of Cameroon, Dr. Augustin SIMO for the laboratory support. The authors also appreciate the community of Hahotoé-Kpogamé for the understanding during sampling period. They also wish to thank Dr. Michel WARNAU, Programme Management Officer for IAEA to Togo for his understanding and availability to this work. We also wish to address special thanks to Col. MANZI Pidalatan, National Liaison Officer of Togo and project coordinator of IAEA TC Project Number: TOG/0/002 provided in granting access to the facilities to successfully complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cebastien Joel Guembou Shouop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazou, E., Guembou Shouop, C.J., Nguelem Mekongtso, E.J. et al. Preliminary assessment of natural radioactivity and associated radiation hazards in a phosphate mining site in southern area of Togo. Radiat Detect Technol Methods 3, 16 (2019). https://doi.org/10.1007/s41605-018-0091-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-018-0091-x

Keywords

Navigation