Skip to main content
Log in

Quaternion offset linear canonical transform in one-dimensional setting

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, we introduce quaternion offset linear canonical transform of integrable and square integrable functions. Moreover, we show that the proposed transform satisfies all the respective properties like inversion formula, linearity, Moyal’s formula, product theorem and the convolution theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data is provided on the request to the authors.

References

  1. Xu, T.Z., and B.Z. Li. 2013. Linear canonical transform and its applications. Beijing: Science Press.

    Google Scholar 

  2. Wei, D., and Y.M. Li. 2014. Generalized wavelet transform based on the convolution operator in the linear canonical transform domain. Optik 125: 4491–4496.

    Article  Google Scholar 

  3. Urynbassarova, D., B.Z. Li, and R. Tao. 2018. Convolution and correlation theorems for Wigner-ville distribution associated with offset linear canonical transform. Optik 157: 455–466.

    Article  Google Scholar 

  4. Kassimi, M.E., Y.E. Haoui, and S. Fahlaoui. 2019. The Wigner-Ville distribution associated with the quaternion offset linear canonical transform. Analysis Mathematica 45 (4): 787–802.

    Article  MathSciNet  MATH  Google Scholar 

  5. Xiang, Q., and K. Qin. 2014. Convolution, correlation and sampling theorems for the offset linear canonical transform. Signal Image and Video Processing. 8 (3): 433–442.

    Article  Google Scholar 

  6. Bhat, M.Y., and A.H. Dar. 2021. Multiresolution analysis for linear canonical S transform. Advances in Operator Theory. 6: 68.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bahri, M., Ashino, R., Vaillancourt, R. 2013. Convolution theorems for quaternion Fourier transform: Properties and applications, in: Hindawi Publishing Corporation Abstract and Applied Analysis, 2013, p. 10.

  8. Sharma, V.D., Deshmukh, P.B. 2016. Convolution structure of fractional quaternion Fourier transform, IJESRT 176-182.

  9. Bhat, M.Y., and A.H. Dar. 2022. Convolution and Correlation Theorems for Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform. Signal, Image and Video Processing 16: 1235–1242.

    Article  Google Scholar 

  10. Zhang, Z. 2019. Linear canonical Wigner distribution based noisy LFM signals detection through the output SNR improvement analysis. IEEE Trans. Signal Process. 67: 5527–5542.

    Article  MathSciNet  MATH  Google Scholar 

  11. Snopek, K.M. 2012. The study of properties of n-d analytic signals and their spectra in complex and hypercomplex domains. Radio Engineering. 21 (1): 29–36.

    Google Scholar 

  12. Sangwine, S.J., and T.A. Ell. 2000. Colour image filters based on hypercomplex convolution. IEEE Process Visual Image Signal Process. 49 (21): 89–93.

    Article  Google Scholar 

  13. Pei, S.C., Chang, J.H., Ding, J.J. Color pattern recognition by quaternion correlation, in: IEEE International Conference Image Process., Thessaloniki.

  14. Sangwine, S.J., and T.A. Ell. 2007. Hypercomplex Fourier transforms of color images. IEEE Transaction Image Process. 16 (1): 22–35.

    Article  MathSciNet  MATH  Google Scholar 

  15. Sangwine, S.J., Evans, C.J., Ell, T.A. 2000. Colour-sensitive edge detection using hyper- complex filters, in: Proceedings of the 10th European Signal Processing Con- ference EUSIPCO, Tampere, Finland, 1, pp. 107-110 .

  16. Gao, C., J. Zhou, F. Lang, Q. Pu, and C. Liu. 2012. Novel approach to edge detection of color image based on quaternion fractional directional differentiation. Advanced Automation Robot. 1: 163–170.

    Google Scholar 

  17. Took, C.C., and D.P. Mandic. 2009. The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Transactions Signal Process. 57 (4): 1316–1327.

    Article  MathSciNet  MATH  Google Scholar 

  18. Witten, B., Shragge, J. 2006. Quaternion-based signal processing, stanford exploration project, New Orleans Annu. Meet. 2862-2866.

  19. Bülow, T., and G. Sommer. 2001. The hypercomplex signal-a novel extensions of the analytic signal to the multidimensional case. IEEE Transactyions Signal Process. 49 (11): 2844–2852.

    Article  MathSciNet  MATH  Google Scholar 

  20. Bayro-Corrochano, E. N., Trujillo, Naranjo, M. 2007. Quaternion Fourier descriptors for preprocessing and recognition of spoken words using images of spatiotemporal representations, J. Math. Imaging Vis. 28 (2)179-190

  21. Bas, P., LeBihan, N., Chassery, J. M. 2003. Color image water marking using quaternion Fourier transform, in: Proceedings of the IEEE International Conference on Acoustics Speech and Signal and Signal Processing, ICASSP, HongKong, pp. 521-524 Greece, October 7-10, 2010, pp. 894-897.

  22. Bahri, M., and A. Ryuichi. 2020. Uncertainty principles related to quaternionic windowed Fourier transform. International Journal of Wavelets, Multiresolution and Information Processing 18 (3): 2050015.

    Article  MathSciNet  MATH  Google Scholar 

  23. Biao, W., and B.Z. Li. 2020. Quaternion windowed linear canonical transform of two-dimensional signals. Advances Applied Clifford Algebras 30: 16.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kou, K.I., J. Ou, and J. Morais. 2016. Uncertainty principles associated with quaternionic linear canonical transforms. Mathematical Methods in the Applied Sciences 39 (10): 2722–2736.

    Article  MathSciNet  MATH  Google Scholar 

  25. Bhat, M.Y., and A.H. Dar. 2022. The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles.J. Analysis 30: 637–649.

    Article  MathSciNet  MATH  Google Scholar 

  26. Dar, A.H., and Bhat, M.Y. 2023. Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-time Quaternion Offset Linear Canonical Transform, Filomat, 37(14): 4467–4480.

  27. Bhat, M.Y., and A.H. Dar. 2021. Wavelets Packets Associated with Linear Canonical Transform on Spectrum. Int. J. Wavelets Multr. Info. Process 19(6): 2150030.

    Book  MATH  Google Scholar 

  28. Bhat, M.Y., and A.H. Dar. 2022. wavelets frames associated with linear canonical transform on spectrum. International Journal Non Linear Analysis Applied. 13 (2): 2297–2310.

    Google Scholar 

  29. Bhat, M.Y., and A.H. Dar. 2021. Wavelet packets associated with linear canonical transform on spectrum. International Journal Wavelts Multiresolution Information Processing. 6: 2150030.

    Article  MathSciNet  MATH  Google Scholar 

  30. Bhat, M.Y., Dar, A.H. 2023. Vector-Valued Nonuniform Multiresolution Analysis Associated with Linear Canonical Transform, Filomat 37(16): 5165–5180.

  31. Bhat, M.Y., and A.H. Dar. 2022. Octonion Spectrum of 3D Short-time LCT Signals. Optik - International Journal for Light and Electron Optics 261: 169156.

    Article  Google Scholar 

  32. Bhat, M.Y., and A.H. Dar. 2022. Quadratic-phase wave packet transform. Optik - International Journal for Light and Electron Optics 261: 169120.

    Article  Google Scholar 

  33. Bhat, M.Y., and A.H. Dar. 2022. Scaled Wigner distribution in the offset linear canonical domain. Optik - International Journal for Light and Electron Optics 262: 169286.

    Article  Google Scholar 

  34. Bhat, M.Y., and A.H. Dar. 2023. The Two-Sided Short-time Quaternionic Offset Linear Canonical Transform and associated Convolution and Correlation. Mathematical Methods in Applied Sciences: 8478–8495.

    Article  MathSciNet  Google Scholar 

  35. Bhat, M.Y., and A.H. Dar. 2022. Fractional vector-valued nonuniform MRA and associated wavelet packets on \(L^2({\mathbb{R} }, {\mathbb{C} }^M)\). Fractional Calculus Applied Analysis 25: 687–719.

    Article  MathSciNet  MATH  Google Scholar 

  36. Dar, A.H. and M.Y. Bhat. 2023. Wigner distribution and associated uncertainty principles in the framework of octonion linear canonical transform. Optik International  Journal for Light and  Electron Optics 272: 170213.

    Article  Google Scholar 

  37. Bahri, M., Toaha, S., Rahim, A., Azis, M. I. 2019. On one-dimensional quaternion Fourier transform, Phys.: Conf. Ser. 1341 062004.

  38. Roopkumar, R. 2016. Quaternionic one-dimensional fractional Fourier transform. Optik 127: 11657–11661.

    Article  Google Scholar 

  39. Siddiqui, S., and L. Bing. 2021. Quaternionic one-dimensional linear canonical transform. Optik. https://doi.org/10.1016/j.ijleo.2021.166914.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Grant (No. JKST &IC/SRE/J/357-60) provided by JKSTIC, U. T. of Jammu and Kashmir, India.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors equally contributed towards this work.

Corresponding author

Correspondence to M. Younus Bhat.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Additional information

Communicated by S. Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, M.Y., Dar, A.H. Quaternion offset linear canonical transform in one-dimensional setting. J Anal 31, 2613–2622 (2023). https://doi.org/10.1007/s41478-023-00585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00585-4

Keywords

Mathematics Subject Classification

Navigation