Skip to main content
Log in

The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

An Erratum to this article was published on 20 October 2021

This article has been updated

Abstract

The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. S. Abe and J. T. Sheridan, Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation, Opt. Lett., 22 (1994), 1801–1803.

    Article  Google Scholar 

  2. M. Bahri and F. M. Saleh Arif, Relation between quaternion Fourier transform and quaternion Wigner-Ville distribution associated with linear canonical transform, J. Appl. Math. (2017), Article ID 3247364.

    Google Scholar 

  3. M. Bahri, Resnawati and S. Musdalifah, A version of uncertainty principle for quaternion linear canonical transform, Abstract Appl. Anal. (2018), Article ID 8732457.

    Google Scholar 

  4. P. Bas, N. Le Bihan and J. M. Chassery, Color image watermarking using quaternion Fourier transform, in: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP (Hong Kong, 2003), 521–5.

    Google Scholar 

  5. R. Bracewell, The Fourier Transform and its Applications, McGraw-Hill Book Co. (New York, 1986).

    MATH  Google Scholar 

  6. T. Bülow, Hypercomplex spectral signal representations for the processing and analysis of images, Ph.D. Thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany (1999).

    MATH  Google Scholar 

  7. L. P. Chen, K. I. Kou and M. S. Liu, Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform, J. Math. Anal. Appl., 1 (2015), 681–700.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. A. Collins, Lens-system diffraction integral written in term of matrix optics, J. Opt. Soc. Amer., 9 (1970), 1168–1177.

    Article  Google Scholar 

  9. T. A. Ell, Quaternion Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems, in: Proceeding of the 32nd Conference on Decision and Control (San Antonio, Texas, 1993), pp. 1830–1841.

    Chapter  Google Scholar 

  10. Y. El Haoui and S. Fahlaoui, Generalized uncertainty principles associated with the quaternionic offset linear canonical transform, arxiv.org/abs/1807.04068v1.

  11. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill (New York, 1988).

    Google Scholar 

  12. E. Hitzer and S. J. Sangwine, The Orthogonal 2D planes split of quaternions and steerable quaternion Fourier transformations, in Quaternion and Clifford Fourier Transforms and Wavelets, E. Hitzer and S. J. Sangwine (eds.), Trends in Mathematics, 27, Birkäuser (Basel, 2013), pp. 15–39.

    Chapter  MATH  Google Scholar 

  13. E. Hitzer, New developments in Clifford Fourier transforms, Adv. Pure Appl. Math., 29 (2014), 19–25.

    Google Scholar 

  14. E. Hitzer, Two-Sided Clifford Fourier transform with two square roots of -1 in Cl(p;q), Adv. Appl. Clifford Algebras, 24 (2014), 313–332.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. F. V. James and G. S. Agarwal, The generalized Fresnel transform and its applications to optics, Opt. Commun., 5 (1996), 207–212.

    Article  Google Scholar 

  16. K. I. Kou, J. Morais and Y. Zhang, Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis, Math. Methods Appl. Sci., 9 (2013), 1028–1041.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. H. Lieb, Integral bounds for radar ambiguity functions and Wigner distributions, J. Math. Phys., 31 (1990) 594–599.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Moshinsky and C. Quesne, Linear canonical transform and their unitary representations, J. Math. Phys. (1971), 1772–1783.

    Google Scholar 

  19. H. M. Ozaktas, M. A. Kutay and Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Wiley (New York, 2000).

    Google Scholar 

  20. S. C. Pei and J. J. Ding, Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms, J. Opt. Soc. Am. A, 20 (2003), 522–532.

    Article  MathSciNet  Google Scholar 

  21. A. Stern, Sampling of compact signals in offset linear canonical transform domains, Signal Image Video Process (2007), 359–367.

    Google Scholar 

  22. R. Tao, B. Deng and Y. Wang, Fractional Fourier Transform and its Applications, Tsinghua University Press (Beijing, 2009).

    Google Scholar 

  23. Viksas R. Dubey, Quaternion Fourier transform for colour images, Int. J. Comp. Sci. Inform. Technologies, 3 (2014), 4411–4416.

    Google Scholar 

  24. E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749–759.

    Article  MATH  Google Scholar 

  25. T. Z. Xu and B. Z. Li, Linear Canonical Transform and its Application, Science Press (Beijing, 2013).

    Google Scholar 

  26. X. Zhi, D. Wei and W. Zhang, A generalized convolution theorem for the special affine Fourier transform and its application to filtering, Optik, 127 (2016), 2613–2616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Kassimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Kassimi, M., El Haoui, Y. & Fahlaoui, S. The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform. Anal Math 45, 787–802 (2019). https://doi.org/10.1007/s10476-019-0007-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-019-0007-0

Key words and phrases

Mathematics Subject Classification

Navigation