Skip to main content
Log in

Multiple-models predictions for drip line nuclides in projectile fragmentation of \(^{40,48}\)Ca, \(^{58,64}\)Ni, and \(^{78,86}\)Kr at 140 MeV/u

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Modern rare isotope beam (RIB) factories will significantly enhance the production of extremely rare isotopes (ERI) at or near drip lines. As one of the most important methods employed in RIB factories, the production of ERIs in projectile fragmentation reactions should be theoretically improved to provide better guidance for experimental research. The cross-sections of ERIs produced in 140 MeV/u \(^{78,86}\)Kr/\(^{58,64}\)Ni/\(^{40,48}\)Ca + \(^{9}\)Be projectile fragmentation reactions were predicted using the newly proposed models [i.e., Bayesian neural network (BNN), BNN + FRACS, and FRACS, see Chin. Phys. C, 46: 074104 (2022)] and the frequently used EPAX3 model. With a minimum cross-section of \(10^{-15}\) mb, the possibilities of ERIs discovery in a new facility for rare isotope beams (FRIB) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Zhang, M.K. Cheoun, Y.B. Choi et al., Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, I: even-even nuclei. Atom. Data Nucl. Data Tabl. 144, 101488 (2022). https://doi.org/10.1016/j.adt.2022.101488

    Article  Google Scholar 

  2. X.W. Xia, Y. Lim, P.W. Zhao et al., The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory. Atom. Data Nucl. Data Tabl. 121–122, 1−215 (2018). https://doi.org/10.1016/j.adt.2017.09.001

    Article  ADS  Google Scholar 

  3. Discovery of nuclides project. https://people.nscl.msu.edu/thoennes/isotopes/ Accessed 30 Nov. 2022

  4. F.G. Kondev, M. Wang, W.J. Huang et al., The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. C 45, 030001 (2021). https://doi.org/10.1088/1674-1137/abddae

    Article  ADS  Google Scholar 

  5. T. Baumann, M. Hausmann, B.M. Sherrill et al., Opportunities for isotope discovery at the FRIB. Nucl. Instrum. Meth. Phys. Res. B 376, 33 (2016). https://doi.org/10.1016/j.nimb.2016.02.057

    Article  ADS  Google Scholar 

  6. C.W. Ma, H.L. Wei, X.Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). https://doi.org/10.1016/j.ppnp.2021.103911

    Article  Google Scholar 

  7. The facility for rare isotope beams opens its doors to discovery. https://msutoday.msu.edu/news/2022/frib-grand-opening

  8. A. Gade, T. Glasmacher, In-beam nuclear spectroscopy of bound states with fast exotic ion beams. Prog. Part. Nucl. Phys. 60, 161 (2008). https://doi.org/10.1016/j.ppnp.2007.08.001

    Article  ADS  Google Scholar 

  9. T. Nakamura, H. Sakurai, H. Watanabe, Exotic nuclei explored at in-flight separators. Prog. Part. Nucl. Phys. 97, 53 (2017). https://doi.org/10.1016/j.ppnp.2017.05.001

    Article  ADS  Google Scholar 

  10. F. Niu, P.H. Chen, H.G. Cheng et al., Multinucleon transfer dynamics in nearly symmetric nuclear reactions. Nucl. Sci. Tech. 31, 59 (2020). https://doi.org/10.1007/s41365-020-00770-1

    Article  Google Scholar 

  11. R. Li, D.H. Zhang, Measurement of cross sections for charge pickup by \(^{84}\)Kr on Al, C and CH\(_2\) targets at 400 MeV/u. Nucl. Sci. Tech. 31, 58 (2020). https://doi.org/10.1007/s41365-020-00768-9

    Article  Google Scholar 

  12. J. Wei, H. Ao, B. Arend et al., Accelerator commissioning, and rare isotope identification at the facility for rare isotope beams. Mod. Phys. Lett. A 37, 2230006 (2022). https://doi.org/10.1142/S0217732322300063

    Article  ADS  Google Scholar 

  13. C.C. Guo, J. Su, L. Zhu, Secondary decay effects of isospin fractionation on projectile fragmentation at GeV/nucleon. Nucl. Sci. Tech. 31, 123 (2020). https://doi.org/10.1007/s41365-020-00832-4

    Article  Google Scholar 

  14. C.W. Ma, Y.P. Liu, H.L. Wei et al., Determination of neutron skin thickness using configurational information entropy. Nucl. Sci. Tech. 33, 6 (2022). https://doi.org/10.1007/s41365-022-00997-0

    Article  Google Scholar 

  15. W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator online beam at BRIF: measurement of the angular distribution of \(^{23}\)Na + \(^{40}\)Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). https://doi.org/10.1007/s41365-021-00889-9

    Article  Google Scholar 

  16. H.W. Zhao, H.S. Xu, G.Q. Xiao et al., Huizhou accelerator complex facility and its future development. Sci. China-Phys. Mech. Astron. 50, 112006 (2020). https://doi.org/10.1360/SSPMA-2020-0248. (in Chinese)

    Article  Google Scholar 

  17. B. Mei, Improved empirical parameterization for projectile fragmentation cross sections. Phys. Rev. C 95, 034608 (2017). https://doi.org/10.1103/PhysRevC.95.034608

    Article  ADS  Google Scholar 

  18. Y.D. Song, H.L. Wei, C.W. Ma et al., Improved FRACS parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions. Nucl. Sci. Tech. 29, 96 (2018). https://doi.org/10.1007/s41365-018-0439-4

    Article  Google Scholar 

  19. Y.D. Song, H.L. Wei, C.W. Ma, A scaling phenomenon for the cross section of fragment produced in projectile fragmentation reactions. Sci. China-Phys. Mech. Astron. 62, 992011 (2019). https://doi.org/10.1007/s11433-018-9364-x

    Article  ADS  Google Scholar 

  20. J.R. Winkelbauer, S.R. Souza, M.B. Tsang, Influence of secondary decay on odd-even staggering of fragment cross section. Phys. Rev. C 88, 044613 (2013). https://doi.org/10.1103/PhysRevC.88.044613

    Article  ADS  Google Scholar 

  21. B. Mei, Accurate odd-even staggering relations for fragmentation and spallation cross section. Phys. Rev. C 103, 044610 (2021). https://doi.org/10.1103/PhysRevC.103.044610

    Article  ADS  Google Scholar 

  22. B. Mei, Odd-even staggering for production cross-sections of nuclei near the neutron drip-line. Chin. Phys. C 45, 084109 (2021). https://doi.org/10.1088/1674-1137/ac06ab

    Article  ADS  Google Scholar 

  23. M.B. Tsang, W.G. Lynch, W.A. Friedman et al., Fragmentation cross sections and binding energies of neutron-rich nuclei. Phys. Rev. C 76, 041302 (2007). https://doi.org/10.1103/PhysRevC.76.041302

    Article  ADS  Google Scholar 

  24. C.W. Ma, Y.D. Song, H.L. Wei, Binding energies of near proton drip line \(Z\) = 22–28 isotopes determined from measured isotopic cross section distributions. Sci. China-Phys. Mech. Astron. 62, 012013 (2019). https://doi.org/10.1007/s11433-018-9256-8

    Article  Google Scholar 

  25. Y.D. Song, H.L. Wei, C.W. Ma, Fragmentation binding energies and cross sections of isotopes near the proton dripline. Phys. Rev. C 98, 024620 (2018). https://doi.org/10.1103/PhysRevC.98.024620

    Article  ADS  Google Scholar 

  26. C.W. Ma, D. Peng, H.L. Wei et al., Isotopic cross-sections in proton-induced spallation reactions based on the Bayesian neural network method. Chin. Phys. C 44, 014104 (2020). https://doi.org/10.1088/1674-1137/44/1/014104

    Article  ADS  Google Scholar 

  27. C.W. Ma, D. Peng, H.L. Wei et al., A Bayesian-neural-network prediction for fragment production in proton induced spallation reaction. Chin. Phys. C 44, 124107 (2020). https://doi.org/10.1088/1674-1137/abb657

    Article  ADS  Google Scholar 

  28. D. Peng, H.L. Wei, X.X. Chen et al., Bayesian evaluation of residual production cross sections in proton-induced nuclear spallation reactions. J. Phys. G- Part. Nucl. Phys. 49, 085102 (2022). https://doi.org/10.1088/1361-6471/ac7069

    Article  ADS  Google Scholar 

  29. C.W. Ma, X.B. Wei, X.X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions using Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). https://doi.org/10.1088/1674-1137/ac5efb

    Article  ADS  Google Scholar 

  30. K. Sümmerer, Improved empirical parametrization of fragmentation cross section. Phys. Rev. C 86, 014601 (2012). https://doi.org/10.1103/PhysRevC.86.014601

    Article  ADS  Google Scholar 

  31. K. Sümmerer, B. Blank, modified empirical parameterization of fragmentation cross sections. Phys. Rev. C 61, 034607 (2000). https://doi.org/10.1103/PhysRevC.61.034607

    Article  ADS  Google Scholar 

  32. M. Wang, W.J. Huang, F.G. Kondev et al., AME 2020 Atomic Mass Evaluation (II) Tables, graphs, and references. Chinese Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

    Article  ADS  Google Scholar 

  33. LISE++ cute, https://lise.nscl.msu.edu/lise.html

  34. FRIB’s first experiment concludes successfully, https://frib.msu.edu/news/2022/first-experiment.html

  35. H.L. Crawford, V. Tripathi, J.M. Allmond et al., Crossing \(N=28\) toward the neutron drip-line: First measurement of half-lives at FRIB. Phys. Rev. Lett. 129, 212501 (2022). https://doi.org/10.1103/PhysRevLett.129.212501

    Article  ADS  Google Scholar 

  36. M. Mocko, M.B. Tsang, L. Andronenko et al., projectile fragmentation of \(^{40}\)Ca, \(^{48}\)Ca, \(^{58}\)Ni, and \(^{64}\)Ni at 140 MeV/nucleon. Phys. Rev. C 74, 054612 (2006). https://doi.org/10.1103/PhysRevC.74.054612

    Article  ADS  Google Scholar 

  37. D.S. Ahn, J. Amano, H. Baba et al., Discovery of \(^{39}\)Na. Phys. Rev. Lett. 129, 212502 (2022). https://doi.org/10.1103/PhysRevLett.129.212502

    Article  ADS  Google Scholar 

  38. B. Li, N. Tang, F.S. Zhang, Production of p-rich nuclei with \({\varvec {Z}}\varvec {=20-25}\) based on radioactive ion beams. Nucl. Sci. Tech. 33, 55 (2022). https://doi.org/10.1007/s41365-022-01048-4

    Article  Google Scholar 

  39. L. Zhou, S.M. Wang, D.Q. Fang et al., Recent progress in the two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). https://doi.org/10.1007/s41365-022-01091-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xiao-Bao Wei and Chun-Wang Ma. The first draft of the manuscript was written by Xiao-Bao Wei, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-Wang Ma.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11975091) and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (No. 21IRTSTHN011).

Appendix

Appendix

The predicted cross-sections (in mb) by the BNN, BNN + FRACS, FRACS, and EPAX3 models are listed in this section. Tables 1 and 2 summarize the results for neutron-rich (see Sect. 3.2) and neutron-deficient fragments (see Sect. 3.3), respectively.

Table 1 The predicted cross-sections (in mb) of light neutron-rich fragment by BNN(\(\sigma _\text {BN}\)), BNN + FRACS(\(\sigma _\text {BF}\)), FRACS(\(\sigma _\text {FR}\)), and EPAX3(\(\sigma _\text {EP}\)) in 140 MeV/u \(^{48}\)Ca + \(^{9}\)Be reactions
Table 2 The predicted cross-sections (in mb) of light proton-rich fragment by BNN(\(\sigma _\text {BN}\)), BNN+FRACS(\(\sigma _\text {BF}\)), FRACS(\(\sigma _\text {FR}\)), and EPAX3(\(\sigma _\text {EP}\)) in 140MeV/u \(^{40}\)Ca + \(^{9}\)Be reactions

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, XB., Wei, HL., Wang, YT. et al. Multiple-models predictions for drip line nuclides in projectile fragmentation of \(^{40,48}\)Ca, \(^{58,64}\)Ni, and \(^{78,86}\)Kr at 140 MeV/u. NUCL SCI TECH 33, 155 (2022). https://doi.org/10.1007/s41365-022-01137-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01137-4

Keywords

Navigation