Skip to main content
Log in

Improved fracs parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The fracs parameterizations, labeled as fracs-c, have been improved in order to predict the presence of isotopes near the proton drip line produced in projectile fragmentation reactions. By investigating the cross sections for proton-rich isotopes in a series of reactions with energies ranging from intermediate to relativistic, it is shown that the fracs-c parameterizations can predict isotopes near the proton drip line considerably well. The fracs-c parameterizations are suggested to serve as an effective tool for predicting the presence of proton-rich isotopes with large asymmetry in a projectile fragmentation reaction. Different reactions have been investigated to check these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.W. Xia, Y. Lim, P.W. Zhao et al., The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory. Atomic Data Nucl. Data Tables 121–122, 1 (2018). https://doi.org/10.1016/j.adt.2017.09.001

    Article  Google Scholar 

  2. H. Wang, G. Audi, F.G. Kondev et al., The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

  3. R. Utama, J. Piekarewicz, Validating neural-network refinements of nuclear mass models. Phys. Rev. C 97, 014306 (2018). https://doi.org/10.1103/PhysRevC.97.014306

  4. N. Wang, M. Liu, X. Wu et al., Surface diffuseness correction in global mass formula. Phys. Lett. B 734, 215 (2014). https://doi.org/10.1016/j.physletb.2014.05.049. For WS4 mass table see http://www.imqmd.com/mass/WS4.txt

  5. G. Sawhney, R.K. Gupta, M.K. Sharma, Importance of deformations in dynamical evolution of proton-halo nuclei. Acta Phys. Polon. B 47, 959 (2016). https://doi.org/10.5506/APhysPolB.47.959

    Article  Google Scholar 

  6. D.Q. Fang, W. Guo, C.W. Ma et al., Examining the exotic structure of the proton-rich nucleus Al-23. Phys. Rev. C 76, 031601 (2007). https://doi.org/10.1103/PhysRevC.76.031601

  7. L.J. Sun, C.J. Lin, X.X. Xu et al., Experimental Study of beta-delayed proton emission of Ca-(36,37). Chin. Phys. Lett. 32, 012301 (2015). https://doi.org/10.1088/0256-307X/32/1/012301

  8. Y.G. Ma, D.Q. Fang, X.Y. Sun et al., Different mechanism of two-proton emission from proton-rich nuclei Al-23 and Mg-22. Phys. Lett. B 743, 306 (2015). https://doi.org/10.1016/j.physletb.2015.02.066

    Article  Google Scholar 

  9. X.X. Xu, L.J. Sun, C.J. Lin et al., Observation of Beta-delayed two-proton emission in the decay of Si-22. Phys. Lett. B 766, 312 (2017). https://doi.org/10.1016/j.physletb.2017.01.028

    Article  Google Scholar 

  10. L.J. Sun, X.X. Xu, D.Q. Fang et al., Beta-decay study of the \(T_{z}=-2\) proton-rich nucleus Mg-20. Phys. Rev. C 95, 014314 (2017). https://doi.org/10.1103/PhysRevC.95.014314

  11. B. Blank, T. Goigoux, P. Ascher et al., New neutron-deficient isotopes from Kr-78 fragmentation. Phys. Rev. C 93, 061301(R) (2016). https://doi.org/10.1103/PhysRevC.93.061301

  12. T. Goigoux, P. Ascher, B. Blank et al., Two-proton radioactivity of Kr-67. Phys. Rev. Lett. 117, 162501 (2016). https://doi.org/10.1103/PhysRevLett.117.162501

    Article  Google Scholar 

  13. T. Kubo, In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan. NIM B204, 97 (2003). https://doi.org/10.1016/S0168-583X(02)01896-7

    Article  Google Scholar 

  14. B.-H. Sun, J.-W. Zhao, X.-H. Zhang et al., Towards the full realization of the RIBLL2 beam line at the HIRFL-CSR complex. Sci. Bull. 63, 78 (2018). https://doi.org/10.1016/j.scib.2017.12.005

    Article  Google Scholar 

  15. J.W. Xia, W.L. Zhan, B.W. Wei et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. NIM A488, 11 (2002). https://doi.org/10.1016/S0168-9002(02)00475-8

    Article  Google Scholar 

  16. M. Hausmann, A.M. Aaron, A.M. Amthor et al., Design of the advanced rare isotope separator ARIS at FRIB. NIM B317, 349 (2013). https://doi.org/10.1016/j.nimb.2013.06.042

    Article  Google Scholar 

  17. C.W. Ma, J.L. Xu, An empirical formula for isotopic yield in Fe + p spallation reactions. J. Phys. G: Nucl. Part. Phys. 44, 125101 (2017). https://doi.org/10.1088/1361-6471/aa90e6

    Article  Google Scholar 

  18. M. Yu, H.-L. Wei, Y.-D. Song, C.-W. Ma, Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes. Chin. Phys. C 41, 094001 (2017). https://doi.org/10.1088/1674-1137/41/9/094001

  19. M.B. Tsang, W.G. Lynch, W.A. Friedman et al., Fragmentation cross sections and binding energies of neutron-rich nuclei. Phys. Rev. C 76, 041302(R) (2007). https://doi.org/10.1103/PhysRevC.76.041302

  20. B. Mei, Improved empirical parameterization for projectile fragmentation cross sections. Phys. Rev. C 95, 034608 (2017). https://doi.org/10.1103/PhysRevC.95.034608

    Article  Google Scholar 

  21. K. Sümmerer, B. Blank, Modified empirical parametrization of fragmentation cross sections. Phys. Rev. C 61, 034607 (2000). https://doi.org/10.1103/PhysRevC.61.034607

    Article  Google Scholar 

  22. K. Sümmerer, Improved empirical parametrization of fragmentation cross sections. Phys. Rev. C 86, 014601 (2012). https://doi.org/10.1103/PhysRevC.86.014601

    Article  Google Scholar 

  23. K. Sümmerer, Erratum: improved empirical parametrization of fragmentation cross sections [Phys. Rev. C 86, 014601 (2012)]. Phys. Rev. C 87, 039903 (2013). https://doi.org/10.1103/PhysRevC.87.039903

    Article  Google Scholar 

  24. A. Stolz, T. Baumann, N.H. Frank et al., First observation of Ge-60 and Se-64. Phys. Lett. B 627, 32 (2005). https://doi.org/10.1016/j.physletb.2005.08.130

    Article  Google Scholar 

  25. B. Blank, S. Andriamonje, R.D. Moral et al., Production cross sections and the particle stability of proton-rich nuclei from Ni-58 fragmentation. Phys. Rev. C 50, 2398 (1994). https://doi.org/10.1103/PhysRevC.50.2398

    Article  Google Scholar 

  26. D. Henzlova, K.-H. Schmidt, M.V. Ricciardi et al., Experimental investigation of the residues produced in the 136Xe + Pb and 124Xe + Pb fragmentation reactions at \(1A\) GeV. Phys. Rev. C 78, 044616 (2008). https://doi.org/10.1103/PhysRevC.78.044616

  27. A. Stolz, T. Faestermann, J. Friese et al., Projectile fragmentation of Sn-112 at \(E_{lab}=1\, A\) GeV. Phys. Rev. C 65, 064603 (2002). https://doi.org/10.1103/PhysRevC.65.064603

  28. S.K. Sharma, B. Kamys, F. Goldenbaum et al., Ranking and validation of spallation models for isotopic production cross sections of heavy residua. Eur. Phys. J. A 53, 150 (2017). https://doi.org/10.1140/epja/i2017-12334-2

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. B. Mei for sending us his well written code for fracs, which cuts the time for us to finish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wang Ma.

Additional information

This work was partially supported by the National Natural Science Foundation of China (No. U1732135), the Key Research Program of Frontier Sciences of CAS (No. QYZDJSSW-SLH002), and the Natural and Science Foundation in Henan Province (No. 162300410179).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YD., Wei, HL., Ma, CW. et al. Improved fracs parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions. NUCL SCI TECH 29, 96 (2018). https://doi.org/10.1007/s41365-018-0439-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0439-4

Keywords

Navigation