Skip to main content

Advertisement

Log in

Beam dynamics optimization of very-high-frequency gun photoinjector

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Very-high-frequency (VHF) gun photoinjectors, capable of producing high-brightness and high-repetition-rate electron bunches, are some of the best electron sources for driving MHz-class repetition-rate free-electron lasers. In this study, the beam dynamics optimization of a VHF gun photoinjector for Shanghai HIgh Repetition Rate X-ray Free Electron Laser and Extreme Light Facility (SHINE) is systematically demonstrated using a genetic algorithm. Through the inclusion of the solenoid geometry as an optimization variable into the genetic algorithm, the optimum projected normalized emittance for 100 pC bunches with bunch length of 1 mm rms is reduced to 0.1 mm mrad for 100% of the particles and 0.075 mm mrad for 95% of the particles, proving that sub-100 nm emittance can be achieved in the SHINE injector using a single-cell Tsinghua University (THU) VHF gun. This emittance fulfills the requirements not only of SHINE and Linac Coherent Light Source (LCLS)-II but also of LCLS-II-High Energy (LCLS-II-HE). We demonstrate that the optimal emittance in the VHF gun injector is reduced via the optimization of the solenoid geometry, thereby reducing solenoid spherical aberration. Through the inclusion of high-order (H.O.) energy spread among the optimization objectives, the H.O. energy spread can be reduced by a factor of nearly six using a high-harmonic cavity despite a 38% emittance growth. Finally, the beam dynamics in the SHINE main accelerator show that reducing the H.O. energy spread in the injector is of great significance to improving compression efficiency and reducing bunch current spike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Emma, J. Frisch, Z. Huang, et al., in Proceedings of FEL2014, Basel, Switzerland, Linear accelerator design for the lcls-ii fel facility. p. 743, (2014)

  2. N. Huang, H. Deng, B. Liu, in 39th Free Electron Laser Conference (FEL’19), Hamburg, Germany, 26–30, et al., Physical design and fel performance study for fel-iii beamline of shine. JACOW Publishing, Geneva, Switzerland 2019, 199–202 (2019)

  3. T. Raubenheimer, in Proceedings of 60th ICFA Advanced Beam Dynamics Workshop (FLS’18),Shanghai, China, 5-9 March 2018, The LCLS-II-HE, A High Energy Upgrade of the LCLS-II. No. 60 in ICFA Advanced Beam Dynamics Workshop, (JACoW Publishing, Geneva, Switzerland, 2018), pp. 6–11. https://doi.org/10.18429/JACoW-FLS2018-MOP1WA02

  4. D. Li, H. Feng, D. Filippetto, et al., in Proceedings of 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19-24 May 2019, Recent Progress on the Design of Normal Conducting APEX-II VHF CW Electron Gun. No. 10 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2019), pp. 1891–1894. https://doi.org/10.18429/JACoW-IPAC2019-TUPRB097

  5. F. Sannibale, D. Filippetto, M. Johnson et al., Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology. Phys. Rev. Accel. Beams 20, 113402 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.113402

    Article  ADS  Google Scholar 

  6. K. Floettmann, Astra: a space charge tracking algorithm. http://www.desy.de/mpyflohttp://www.desy.de/mpyflo

  7. A. Adelmann, C. Kraus, Y. Ineichen, et al., The OPAL (Object Oriented Parallel Accelerator Library) Framework. Tech. Rep. PSI-PR-08-02 (2008)

  8. J. Qiang, S. Lidia, R.D. Ryne et al., Three-dimensional quasistatic model for high brightness beam dynamics simulation. Phys. Rev. ST Accel. Beams 9, 044204 (2006). https://doi.org/10.1103/PhysRevSTAB.9.044204

    Article  ADS  Google Scholar 

  9. General Particle Tracer (GPT) code., http://www.pulsar.nl/gpt/

  10. L. Zheng, Z. Li, Y. Du, in 10th Int. Partile Accelerator Conference (IPAC’19), Melbourne, Australia, 19–24, et al., Design of a 217 mhz vhf gun at tsinghua university. JACOW Publishing, Geneva, Switzerland 2019, 2050–2053 (2019)

  11. R.P. Wells, W. Ghiorso, J. Staples et al., Mechanical design and fabrication of the vhf-gun, the berkeley normal-conducting continuous-wave high-brightness electron source. Rev. Sci. Instrum. 87, 023302 (2016). https://doi.org/10.1063/1.4941836

    Article  ADS  Google Scholar 

  12. L. Zheng, Y. Du, Z. Zhang et al., Development of s-band photocathode rf guns at tsinghua university. Nucl. Instrum. Methods Phys. Res. Sect. A 834, 98–107 (2016). https://doi.org/10.1016/j.nima.2016.07.015

    Article  ADS  Google Scholar 

  13. H. Xu, J. Shi, Y. Du et al., Development of an l-band photocathode rf gun at tsinghua university. Nucl. Instrum. Methods Phys. Res. Sect. A 985, 164675 (2021). https://doi.org/10.1016/j.nima.2020.164675

    Article  Google Scholar 

  14. H. Chen, L. Zheng, P. Huang et al., Analysis of slice transverse emittance evolution in a very-high-frequency gun photoinjector. Phys. Rev. Accel. Beams 24, 124402 (2021). https://doi.org/10.1103/PhysRevAccelBeams.24.124402

    Article  ADS  Google Scholar 

  15. I.V. Bazarov, C.K. Sinclair, Multivariate optimization of a high brightness dc gun photoinjector. Phys. Rev. ST Accel. Beams 8, 034202 (2005). https://doi.org/10.1103/PhysRevSTAB.8.034202

    Article  ADS  Google Scholar 

  16. I.V. Bazarov, A. Kim, M.N. Lakshmanan et al., Comparison of dc and superconducting rf photoemission guns for high brightness high average current beam production. Phys. Rev. Spec. Top. Accel Beams 14, 072001 (2011). https://doi.org/10.1103/PhysRevSTAB.14.072001

    Article  Google Scholar 

  17. C.M. Pierce, M.B. Andorf, E. Lu et al., Low intrinsic emittance in modern photoinjector brightness. Phys. Rev. Accel. Beams 23, 070101 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.070101

    Article  ADS  Google Scholar 

  18. R. Hajima, R. Nagai, Multiparameter optimization of an erl injector. Nucl. Instrum. Methods Phys. Res. Sect. A 557, 103–105 (2006). https://doi.org/10.1016/j.nima.2005.10.060

    Article  ADS  Google Scholar 

  19. L. Cultrera, C. Gulliford, A. Bartnik et al., Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light. Appl. Phys. Lett. 108, 134105 (2016). https://doi.org/10.1063/1.4945091

    Article  ADS  Google Scholar 

  20. S. Schubert, M. Ruiz-Osés, I. Ben-Zvi et al., Bi-alkali antimonide photocathodes for high brightness accelerators. APL Mater. 1, 032119 (2013). https://doi.org/10.1063/1.4821625

    Article  ADS  Google Scholar 

  21. W. Decking, S. Abeghyan, P. Abramian et al., A mhz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics 14, 1–7 (2020). https://doi.org/10.1038/s41566-020-0607-z

    Article  Google Scholar 

  22. C.J. Milne, T. Schietinger, M. Aiba et al., SwissFEL: the swiss x-ray free electron laser. Appl. Sci. 7, 720 (2017). https://doi.org/10.3390/app7070720

    Article  Google Scholar 

  23. P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010). https://doi.org/10.1038/nphoton.2010.176

    Article  ADS  Google Scholar 

  24. C.F. Papadopoulos, D. Filippetto, F. Sannibale, et al., in Proc. 5th International Particle Accelerator Conference (IPAC’14), Dresden, Germany, June 15-20, 2014, RF Injector Beam Dynamics Optimization for LCLS-II. No. 5 in International Particle Accelerator Conference, (JACoW, Geneva, Switzerland, 2014), pp. 1974–1976. https://doi.org/10.18429/JACoW-IPAC2014-WEPRO015

  25. M. Cornacchia, Linac coherent light source (lcls) design study report (Tech. repStanford Linear Accelerator Center, Menlo Park, CA (US), 1998)

  26. J.J. Guo, Q. Gu, M. Zhang et al., Power losses caused by longitudinal homs in 1.3-ghz cryomodule of shine. Nucl. Sci. Tech. 30, 105 (2019). https://doi.org/10.1007/s41365-019-0628-9

    Article  Google Scholar 

  27. Z.Y. Ma, S.J. Zhao, X.M. Liu et al., High rf power tests of the first 1.3 ghz fundamental power coupler prototypes for the shine project. Nucl. Sci. Tech. 33, 10 (2022). https://doi.org/10.1007/s41365-022-00984-5

    Article  Google Scholar 

  28. K. Deb, A. Pratap, S. Agarwal et al., A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6, 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  29. C.M. Silva, E.C. Biscaia, in European Symposium on Computer Aided Process Engineering-12, Multiobjective dynamic optimization of semi-continuous processes. Vol. 10 of Computer Aided Chemical Engineering, (Elsevier, 2002), pp. 967–972 https://doi.org/10.1016/S1570-7946(02)80189-4

  30. D.H. Dowell, Sources of emittance in rf photocathode injectors: Intrinsic emittance, space charge forces due to non-uniformities, rf and solenoid effects. arXiv preprint arXiv:1610.01242

  31. V. Kumar, D. Phadte, C. Patidar, in Proceedings of the DAE-BRNS Indian particle accelerator conference, A simple formula for emittance growth due to spherical aberration in a solenoid lens. (2011)

  32. S. Zhao, S. Huang, L. Lin et al., Longitudinal phase space improvement of a continuous-wave photoinjector toward x-ray free-electron laser application. Nucl. Instrum. Methods Phys. Res. Sect. A 1018, 165796 (2021). https://doi.org/10.1016/j.nima.2021.165796

    Article  Google Scholar 

  33. T.K. Charles, D.M. Paganin, A. Latina et al., Current-horn suppression for reduced coherent-synchrotron-radiation-induced emittance growth in strong bunch compression. Phys. Rev. Accel. Beams 20, 030705 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.030705

    Article  ADS  Google Scholar 

  34. T.K. Charles, D.M. Paganin, R.T. Dowd, Caustic-based approach to understanding bunching dynamics and current spike formation in particle bunches. Phys. Rev. Accel. Beams 19, 104402 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.104402

    Article  ADS  Google Scholar 

  35. Y. Ding, K.L. Bane, W. Colocho et al., Beam shaping to improve the free-electron laser performance at the linac coherent light source. Phys. Rev. Accel. Beams 19, 100703 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.100703

    Article  ADS  Google Scholar 

  36. Y.X. Zhang, J.F. Chen, D. Wang, Rf design optimization for the shine 3.9 ghz cavity. Nucl. Sci. Tech. 31, 73 (2020). https://doi.org/10.1007/s41365-020-00772-z

    Article  Google Scholar 

  37. Y.W. Gong, M. Zhang, W.J. Fan et al., Beam performance of the shine dechirper. Nucl. Sci. Tech. 32, 29 (2021). https://doi.org/10.1007/s41365-021-00860-8

    Article  Google Scholar 

  38. Z. Wang, C. Feng, D.Z. Huang et al., Nonlinear energy chirp compensation with corrugated structures. Nucl. Sci. Tech. 29, 175 (2018). https://doi.org/10.1007/s41365-018-0512-z

    Article  Google Scholar 

  39. K. Bane, P. Emma, in Proceedings of the 2005 Particle Accelerator Conference, Litrack: a fast longitudinal phase space tracking code with graphical user interface. IEEE, pp. 4266–4268, (2005)

  40. P.R. Bolton, J.E. Clendenin, D.H. Dowell et al., Photoinjector design for the LCLs. Nucl. Instrum. Methods Phys. Res. Sect. A 483, 296–300 (2002).https://doi.org/10.1016/S0168-9002(02)00331-5

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Han Chen, Lian-Min Zheng and Ying-Chao Du. The first draft of the manuscript was written by Han Chen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lian-Min Zheng.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zheng, LM., Gao, B. et al. Beam dynamics optimization of very-high-frequency gun photoinjector. NUCL SCI TECH 33, 116 (2022). https://doi.org/10.1007/s41365-022-01105-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01105-y

Keywords

Navigation