Skip to main content
Log in

Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

High-brightness electron beams are required to drive LINAC-based free-electron lasers (FELs) and storage-ring-based synchrotron radiation light sources. The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current; the minimum transverse emittance is mainly determined by the injector of the LINAC. Thus, a photoinjector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable. The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper. Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II. The effects of the laser pulse shape, half-cell length of the RF gun, and RF parameters on the output beam quality were analyzed and compared. The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC, respectively. Finally, the beam stability properties of the photoinjector, considering misalignment and RF jitter, were simulated and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00023 and http://resolve.pid21.cn/31253.11.sciencedb.j00186.00023.

References

  1. M. Eriksson, J.F. van der Veen, C. Quitmann et al., Diffraction-limited storage rings–a window to the science of tomorrow. J. Synchrotron Rad. 21, 837–842 (2014). https://doi.org/10.1107/S1600577514019286

    Article  Google Scholar 

  2. A. Bjorling, S. Kalbfleisch, M. Kahnt et al., Ptychographic characterization of a coherent nanofocused X-ray beam. Opt. Express 28, 5069–5076 (2020). https://doi.org/10.1364/OE.386068

    Article  ADS  Google Scholar 

  3. S. Kumar, Next Generation Light Sources and Applications. http://arXiv:1807.11084v3

  4. C. Bostedt, S. Boutet, D.M. Fritz et al., LINAC coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016). https://doi.org/10.1103/RevModPhys.88.015007

    Article  ADS  Google Scholar 

  5. C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). https://doi.org/10.1007/s41365-018-0490-1

    Article  Google Scholar 

  6. Z. Zhao, D. Wang, Q. Gu et al., SXFEL: A Soft X-ray free electron laser in China. Synchrotron Rad. News 30, 29–33 (2017). https://doi.org/10.1080/08940886.2017.1386997

    Article  ADS  Google Scholar 

  7. L.M. Zheng, Y.C. Du, Z. Zhang et al., Development of S-band photocathode RF guns at Tsinghua University. Nucl. Instrum. Meth. Phys. Res. Sect. A 834, 98–107 (2016). https://doi.org/10.1016/j.nima.2016.07.015

    Article  ADS  Google Scholar 

  8. P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010). https://doi.org/10.1038/nphoton.2010.176

    Article  ADS  Google Scholar 

  9. H.S. Kang, C.K. Min, H. Heo et al., Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708–713 (2017). https://doi.org/10.1038/s41566-017-0029-8

    Article  ADS  Google Scholar 

  10. J. Lee, I.S. Ko, J.H. Han et al., Parameter optimization of PAL-XFEL injector. J. Korean Phys. Soc. 72, 1158–1165 (2018). https://doi.org/10.3938/jkps.72.1158

    Article  ADS  Google Scholar 

  11. C. Milne, T. Schietinger, M. Aiba et al., SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017). https://doi.org/10.3390/app7070720

    Article  Google Scholar 

  12. T. Schietinger, M. Pedrozzi, M. Aiba et al., Commissioning experience and beam physics measurements at the SwissFEL injector test facility. Phys. Rev. Accel. Beams 19, 100702 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.100702

    Article  ADS  Google Scholar 

  13. M. Bei, M. Borland, Y. Cai et al., The potential of an ultimate storage ring for future light sources. Nucl. Instrum. Meth. Phys. Res. Sect. A 622, 518–535 (2010). https://doi.org/10.1016/j.nima.2010.01.045

    Article  ADS  Google Scholar 

  14. P.F. Tavares, E. Al-Dmour, A. Andersson et al., Commissioning and first-year operational results of the MAX IV 3 GeV ring. J. Synchrotron Rad. 25, 1291–1316 (2018). https://doi.org/10.1107/S1600577518008111

    Article  Google Scholar 

  15. K. Duhrkop, M. Fleischauer, M. Ludwig et al., SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019). https://doi.org/10.1038/s41592-019-0344-8

    Article  Google Scholar 

  16. R. Hettel, DLSR design and plans: an international overview. J. Synchrotron Rad. 21, 843–855 (2014). https://doi.org/10.1107/S1600577514011515

    Article  Google Scholar 

  17. Y.C. Nie, C. Liebig, M. Hüning et al., Tuning of 2.998 GHz S-band hybrid buncher for injector upgrade of LINAC II at DESY. Nucl. Instrum. Meth. Phys. Res. Sect. A 761, 69–78 (2014). https://doi.org/10.1016/j.nima.2014.05.043

    Article  ADS  Google Scholar 

  18. J. Andersson, F. Curbis, L. Isaksson et al., The pre-injector and photocathode gun design for the MAX IV SXL. in Proceedings of IPAC2019, Melbourne, Australia, 2064–2066 (2019). https://doi.org/10.18429/JACOW-IPAC2019-TUPTS061

  19. W.X. Wang, C. Li, Z.G. He et al., Commissioning the photocathode radio frequency gun: a candidate electron source for Hefei Advanced Light Facility. Nucl. Sci. Tech. 33, 1–9 (2022). https://doi.org/10.1007/s41365-022-01000-6

    Article  Google Scholar 

  20. Y. Jiao, G. Xu, X.H. Cui et al., The HEPS project. J. Synchrotron Rad. 25, 1611–1618 (2018). https://doi.org/10.1107/S1600577518012110

    Article  Google Scholar 

  21. S. Henderson, Status of the APS upgrade project. in Proceedings of IPAC 2015, Richmond, VA, USA, 1791–1793 (2015). https://doi.org/10.18429/JACoW-IPAC2015-TUPJE067

  22. D. Wang, K.L.F. Bane, S. Santis et al., Single bunch instability simulations in the storage ring of the ALS-U project. in Proceedings of IPAC2021, Campinas, SP, Brazil, 2783–2785 (2021). https://doi.org/10.18429/JACOW-IPAC2021-WEPAB082

  23. L. Yang, D. Robin, F. Sannibale et al., Global optimization of an accelerator lattice using multiobjective genetic algorithms. Nucl. Instrum. Meth. Phys. Res. Sect. A 609, 50–57 (2009). https://doi.org/10.1016/j.nima.2009.08.027

    Article  ADS  Google Scholar 

  24. J. Wan, P. Chu, Y. Jiao, Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics. Phys. Rev. Accel. Beams 23, 081601 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.081601

    Article  ADS  Google Scholar 

  25. C. Meng, O.Z. Xiao, X. He et al., Optimization of Klystron efficiency with MOGA. in Proceedings of IPAC2018, Vancouver, BC, Canada, 2419–2421 (2018). https://doi.org/10.18429/JACoW-IPAC2018-WEPMF030

  26. X. Pang, L.J. Rybarcyk, Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation. Nucl. Instrum. Meth. Phys. Res. Sect. A 741, 124–129 (2014). https://doi.org/10.1016/j.nima.2013.12.042

    Article  ADS  Google Scholar 

  27. H. Feng, S. De Santis, K. Baptiste et al., Proposed design and optimization of a higher harmonic cavity for ALS-U. Rev. Sci. Instr. 91, 014712 (2020). https://doi.org/10.1063/1.5135955

    Article  ADS  Google Scholar 

  28. R. Bartolini, M. Apollonio, I.P.S. Martin, Multiobjective genetic algorithm optimization of the beam dynamics in LINAC drivers for free electron lasers. Phys. Rev. ST Accel. Beams 15, 030701 (2012). https://doi.org/10.1103/PhysRevSTAB.15.030701

    Article  ADS  Google Scholar 

  29. C. Gulliford, A. Bartnik, I. Bazarov et al., Multiobjective optimization design of an RF gun based electron diffraction beam line. Phys. Rev. Accel. Beams 20, 033401 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.033401

    Article  ADS  Google Scholar 

  30. I.V. Bazarov, C.K. Sinclair, Multivariate optimization of a high brightness dc gun photoinjector. Phys. Rev. ST Accel. Beams 8, 034202 (2005). https://doi.org/10.1103/PhysRevSTAB.8.034202

    Article  ADS  Google Scholar 

  31. K. Deb, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  32. J. Rosenzweig, S. Anderson, K. Bishofberger et al., The neptune photoinjector. Nucl. Instrum. Meth. Phys. Res. Sect. A 410, 437–451 (1998). https://doi.org/10.1016/S0168-9002(98)00175-2

    Article  ADS  Google Scholar 

  33. K. Halbach, R. Holsinger, Superfish–a computer program for evaluation of RF cavities with cylindrical symmetry. Particle Accel. 7, 213–222 (1976)

    Google Scholar 

  34. T. Rao, D.H. Dowell, An engineering guide to photoinjectors. http://arXiv:1807.11084v3

  35. C. Limborg-Deprey, L. Xiao, D. Dowell et al., Modifications on RF components in the LCLS injector. in Proceedings of PAC2005, Knoxville, Tennessee, 2233–2235 (2005). https://doi.org/10.1109/PAC.2005.1591067

  36. D. Alesini, A. Battisti, M. Bellaveglia et al., Design, realization, and high power test of high gradient, high repetition rate brazing-free S-band photogun. Phys. Rev. Accel. Beams 21, 112001 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.112001

    Article  ADS  Google Scholar 

  37. K. Flöttmann: ASTRA: A space charge tracking algorithm, http://www.desy.de/~mpyflo/

  38. B.E. Carlsten, New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instrum. Meth. Phys. Res. Sect. A 285, 313–319 (1989). https://doi.org/10.1016/0168-9002(89)90472-5

    Article  ADS  Google Scholar 

  39. Y. Ding, A. Brachmann, F.J. Decker et al., Measurements and simulations of ultralow emittance and ultrashort electron beams in the LINAC coherent light source. Phys. Rev. Lett. 102, 254801 (2009). https://doi.org/10.1103/PhysRevSTAB.15.030701

    Article  ADS  Google Scholar 

  40. P.W. Huang, H. Qian, Y. Du et al., Photoemission and degradation of semiconductor photocathode. Phys. Rev. Accel. Beams 22, 123403 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.123403

    Article  ADS  Google Scholar 

  41. F. Zhou, A. Brachmann, P. Emma et al., Impact of the spatial laser distribution on photocathode gun operation. Phys. Rev. ST Accel. Beams 15, 090701 (2012). https://doi.org/10.1103/PhysRevSTAB.15.090701

    Article  ADS  Google Scholar 

  42. S. Lederer, S. Schreiber, Cs2Te photocathode lifetime at flash and European XFEL. in Proceedings of IPAC2018, Vancouver, BC, Canada, 2496–2498 (2018). https://doi.org/10.18429/JACoW-IPAC2018-WEPMF056

  43. D.H. Dowell, J.F. Schmerge, Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. ST Accel. Beams 12, 074201 (2009). https://doi.org/10.1103/PhysRevSTAB.12.074201

    Article  ADS  Google Scholar 

  44. H.H. Li, J. Wang, L. Tang et al., Project of Wuhan photon source. in Proceedings of IPAC2021, Campinas, SP, Brazil, 346–349 (2021). https://doi.org/10.18429/JACoW-IPAC2021-MOPAB092

  45. J.K. Kim, RF and space-charge effects in laser-driven RF electron guns. Nucl. Instrum. Meth. Phys. Res. Sect. A 275, 201–218 (1989). https://doi.org/10.1016/0168-9002(89)90688-8

    Article  ADS  Google Scholar 

  46. E. Pirez, P. Musumeci, J. Maxson et al., S-band 1.4 cell photoinjector design for high brightness beam generation. Nucl. Instrum. Meth. Phys. Res. Sect. A 865, 109–113 (2017). https://doi.org/10.1016/j.nima.2016.08.063

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ze-Yi Dai, Yuan-Cun Nie, Zi Hui, Lan-Xin Liu, and Zi-Shuo Liu. The first draft of the manuscript was written by Ze-Yi Dai and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuan-Cun Nie or Jian-Hua He.

Additional information

This work was supported by the Science and Technology Major Project of Hubei Province, China (No. 2021AFB001).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, ZY., Nie, YC., Hui, Z. et al. Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm. NUCL SCI TECH 34, 41 (2023). https://doi.org/10.1007/s41365-023-01183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01183-6

Keywords

Navigation