Skip to main content

Advertisement

Log in

Transition edge sensor-based detector: from X-ray to \(\gamma\)-ray

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A transition edge sensor (TES) is extremely sensitive to changes in temperature, and combined with a high-Z metal of a certain thickness, it can realize high-energy resolution measurements of particles such as X-rays. X-rays with energies below 10 keV have a weak penetrating ability, hence, only gold or bismuth of a few micrometers in thickness can guarantee a quantum efficiency higher than 70%. Therefore, the entire structure of the TES X-ray detector in this energy range can be realized using a microfabrication process. However, for X-rays or \(\gamma\)-rays from 10 keV to 200 keV, submillimeter absorber layers are required, which cannot be realized using the microfabrication process. This paper first briefly introduces a set of TES X-ray detectors and their auxiliary systems, and then focuses on the introduction of the TES \(\gamma\)-ray detector with an absorber based on a submillimeter lead-tin alloy sphere. The detector achieved a quantum efficiency above 70% near 100 keV and an energy resolution of approximately 161.5 eV at 59.5 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.D. Irwin, G.C. Hilton, Transition-edge sensors. Cryogenic Particle Detection, Topics Appl. Phys. 99. Chapter.3 (Springer, Berlin, Heidelberg), 63-150 (2005). https://doi.org/10.1007/10933596_3

  2. S. Zhang, W. Cui, Z. Liu et al., Development of basic theory and application of cryogenic X-ray spectrometer in light sources and X-ray satellite. Acta Phys. Sin. 70(18), 180702 (2021). https://doi.org/10.7498/aps.70.20210350

    Article  Google Scholar 

  3. J.N. Ullom, D.A. Bennett, Review of superconducting transition-edge sensors for X-ray and \(\gamma\)-ray spectroscopy. Supercond. Sci. Technol. 28, 084003 (2015). https://doi.org/10.1088/0953-2048/28/8/084003

    Article  ADS  Google Scholar 

  4. L. Gottardi, K. Nagayashi, A review of X-ray microcalorimeters based on superconducting transition edge sensors for astrophysics and particle physics. Appl. Sci. 11(9), 3793 (2021). https://doi.org/10.3390/app11093793

    Article  Google Scholar 

  5. Z. Wang, C. Feng, Z.T. Zhao et al., Generation of double pulses at the Shanghai Soft X-ray Free Electron Laser facility. Nucl. Sci. Tech. 28(3), 28 (2017). https://doi.org/10.1007/s41365-017-0188-9

    Article  Google Scholar 

  6. S. Friedrich, Cryogenic X-ray detectors for synchrotron science. J. Synchrotron Rad. 13, 159 (2006) https://journals.iucr.org/s/issues/2006/02/00/gf0004/index.htmlhttps://doi.org/10.1107/S090904950504197X

  7. J. Uhlig, W.B. Doriese, J.N. Ullom et al., High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential. J. Synchrotron Rad. 22, 766 (2015) https://journals.iucr.org/s/issues/2015/03/00/hf5280/index.htmlhttps://doi.org/10.1107/S1600577515004312

  8. W.B. Doriese, J.N. Ullom, D.S. Swetz et al., A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science. Rev. Sci. Instrum. 88, 053108 (2017). https://doi.org/10.1063/1.4983316

    Article  ADS  Google Scholar 

  9. S. Zhang, J.K. Xia, Z. Liu et al., TES-based X-ray spectrometer developed for SHINE project. Proc. SPIE 12169, 121691N (2022). https://doi.org/10.1063/1.4983316

    Article  Google Scholar 

  10. J.W. Fowler, G.C. O’Neil, J.N. Ullom et al., Absolute energies and emission line shapes of the L X-ray transitions of lanthanide metals. Metrologia 58, 015016 (2021). https://doi.org/10.1088/1681-7575/abd28a

    Article  ADS  Google Scholar 

  11. S. Yamada, H. Tatsuno, T. Hashimoto et al., Coevolution of the technology on transition edge sensor spectrometer and its application to fundamental science. J. Low Temp. Phys. 200, 418 (2020). https://doi.org/10.1007/s10909-020-02441-2

    Article  ADS  Google Scholar 

  12. J. Uhlig, W. Fullagar, J.N. Ullom et al., Table-top ultrafast X-ray microcalorimeter spectrometry for molecular structure. Phys. Rev. Lett. 110, 138302 (2013). https://doi.org/10.1103/PhysRevLett.110.138302

    Article  ADS  Google Scholar 

  13. Y.I. Joe, G.C. O’Neil, J.N. Ullom et al., Observation of iron spin-states using tabletop X-ray emission spectroscopy and microcalorimeter sensors. J. Phys. B: At. Mol. Opt. Phys. 49, 024003 (2015). https://doi.org/10.1088/0953-4075/49/2/024003

    Article  ADS  Google Scholar 

  14. G.C. O’Neil, L.M. Avila, J.N. Ullom et al., Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array. J. Phys. Chem. Lett. 8(5), 1099–1104 (2017). https://doi.org/10.1021/acs.jpclett.7b00078

    Article  Google Scholar 

  15. L.M. Avila, G.C. O’Neil, J.N. Ullom et al., Ultrafast time-resolved hard X-ray emission spectroscopy on a tabletop. Phys. Rev. X 6, 031047 (2016). https://doi.org/10.1103/PhysRevX.6.031047

    Article  Google Scholar 

  16. S. Okada, D.A. Bennett, J. Zmeskal et al., First application of superconducting transition-edge sensor microcalorimeters to hadronic atom X-ray spectroscopy. Prog. Theor. Exp. Phys. 09, 091D01 (2016). https://academic.oup.com/ptep/article/2016/9/091D01/2590795https://doi.org/10.1093/ptep/ptw130

  17. T. Hashimoto, D.A. Bennett, S. Yamada et al., Integration of a TES-based X-ray spectrometer in a kaonic atom experiment. J. Low Temp. Phys. 199, 1018 (2020). https://doi.org/10.1007/s10909-020-02434-1

    Article  ADS  Google Scholar 

  18. Y. Shen, J. Xiao, K. Yao et al., The status of the micro-calorimeter at Shanghai EBIT. Nucl. Instrum. Methods Phys. Res. Sect. B 408, 326–328 (2017). https://doi.org/10.1016/j.nimb.2017.05.049

    Article  ADS  Google Scholar 

  19. J.S. Adams, N. Bastidon, D.C. Goldfinger et al., First operation of TES microcalorimeters in space with the micro-X sounding rocket. J. Low Temp. Phys. 199, 1062–1071 (2020). https://doi.org/10.1007/s10909-019-02293-5

    Article  ADS  Google Scholar 

  20. D. Barret, T.L. Trong, JWd. Herder et al., The athena X-ray integral field unit (X-IFU). Proc. SPIE 9905, 99052F–1 (2016). https://doi.org/10.1117/12.2232432

    Article  Google Scholar 

  21. W. Cui, J.N. Bregman, M.P. Bruijn et al., HUBS: a dedicated hot circumgalactic medium explorer. Proc. SPIE 11444, 114442S (2020). https://doi.org/10.1117/12.2560871

    Article  Google Scholar 

  22. M.H. Carpenter, M.P. Croce, Z.K. Baker et al., Hyperspectral X-ray imaging with TES detectors for nanoscale chemical speciation mapping. J. Low Temp. Phys. 200, 437–444 (2020). https://doi.org/10.1007/s10909-020-02456-9

    Article  ADS  Google Scholar 

  23. S.J. Lee, C.J. Titus, K.D. Irwin et al., Soft X-ray spectroscopy with transition-edge sensors at Stanford Synchrotron Radiation Lightsource beamline 10–1. Rev. Sci. Instrum. 90, 113101 (2019). https://doi.org/10.1063/1.5119155

    Article  ADS  Google Scholar 

  24. S.F. Li, S.J. Lee, Y.J. Liu et al., Surface-to-bulk redox coupling through thermally driven Li redistribution in Li- and Mn-rich layered cathode materials. P. Am. Chem. Soc. 141(30), 12079–12086 (2019). https://doi.org/10.1021/jacs.9b05349

    Article  Google Scholar 

  25. C.J. Titus, M.L. Baker, D. Nordlund et al., L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array. J. Chem. Phys. 147, 214201 (2017). https://doi.org/10.1063/1.5000755

    Article  ADS  Google Scholar 

  26. Y.I. Joe, Y.Z. Fang, P. Abbamonte et al., Resonant soft X-ray scattering from stripe-ordered \(\rm {La_{2-x}Ba_xCuO_4}\) detected by a transition-edge sensor array detector. Phys. Rev. Appl. 13, 034026 (2020). https://doi.org/10.1103/PhysRevApplied.13.034026

    Article  ADS  Google Scholar 

  27. L. Gabriele, B. Martinez, J. Ullom et al., The transition-edge EBIT microcalorimeter spectrometer. Proc. SPIE 9144, 91443U (2014). https://doi.org/10.1117/12.2055568

    Article  Google Scholar 

  28. G.V. Browna, J.S. Adamsb, P. Beiersdorfer et al., Laboratory astrophysics, QED, and other measurements using the EBIT calorimeter spectrometer at LLNL. AIP Conf. Proc. 1185, 446 (2009). https://doi.org/10.1063/1.3292374

    Article  ADS  Google Scholar 

  29. P. Szypryt, G.C. O’Neil, E. Takacs et al., A transition-edge sensor-based X-ray spectrometer for the study of highly charged ions at the National Institute of Standards and Technology electron beam ion trap. Rev. Sci. Instrum. 90, 123107 (2019). https://doi.org/10.1117/12.2594652

    Article  ADS  Google Scholar 

  30. K. Maehataa, T. Harab, T. Ito et al., A dry 3He-4He dilution refrigerator for a transition edge sensor microcalorimeter spectrometer system mounted on a transmission electron microscope. Cryogenics 61, 86–91 (2014). https://www.sciencedirect.com/science/article/pii/S0011227514000538?via%3Dihubhttps://doi.org/10.1016/j.cryogenics.2014.03.002

  31. P. Szypryt, D.A. Bennett, W.J. Boone et al., Design of a 3000-pixel transition-edge sensor X-ray spectrometer for microcircuit tomography. IEEE T. Appl. Superconductivity 31(5), 2100405 (2021). https://ieeexplore.ieee.org/document/9328316https://doi.org/10.1109/TASC.2021.3052723

  32. A. Yamaguchi, H. Muramatsu, K. Mitsuda et al., Energy of the 229Th nuclear clock isomer determined by absolute \(\gamma\)-ray energy difference. Phys. Rev. Lett. 123, 222501 (2019). https://doi.org/10.1103/PhysRevLett.123.222501

    Article  ADS  Google Scholar 

  33. M.W. Rabin, National and international security applications of cryogenic detector mostly nuclear safeguards. AIP Conf. Proc. 1185, 725–732 (2009). https://doi.org/10.1063/1.3292444

    Article  ADS  Google Scholar 

  34. R. Winklera, A..S. Hoover, J.N. Ullom et al., 256-pixel microcalorimeter array for high-resolution \(\gamma\)-ray spectroscopy of mixed-actinide materials. Nucl. Instrum. Methods Phys. Res. Sect. A 770, 203–210 (2015). https://doi.org/10.1016/j.nima.2014.09.049

    Article  ADS  Google Scholar 

  35. R. Winkler, A.S. Hoover, J.N. Ullomb et al., 256-pixel microcalorimeter array for high-resolution \(\gamma\)-ray spectroscopy of mixed-actinide materials. Nucl. Instrum. Methods Phys. Res. Sect. A 770, 203–210 (2015). https://doi.org/10.1016/j.nima.2014.09.049

    Article  ADS  Google Scholar 

  36. F. Xie, X.B. He, Y.F. Chang et al., Determination of absolute gamma-ray emission probabilities for \({^{88}\text{ Kr }}\). Nucl. Sci. Tech. 22(5), 304–306 (2011). https://doi.org/10.13538/j.1001-8042/nst.22.304-306

    Article  Google Scholar 

  37. M. Lin, K. Takuji, F. Slawomir et al., Dose inter-comparison studies for\({^{60}\text{ Co }}\) gamma-ray and electron beam irradiation in the year 2002. Nucl. Sci. Tech. 15(3), 166–173 (2004). http://www.nst.sinap.ac.cn/thesisDetails?columnId=6042810 &Fpath=home &index=0 &lang=enweb-link

  38. S. Zhang, W. Cui, Z. Liu et al., Development of basic theory and application of cryogenic X-ray spectrometer in light sources and X-ray satellite. Acta Phys. Sin. 70, 180702 (2021). https://doi.org/10.7498/aps.70.20210350

    Article  Google Scholar 

  39. S.H. Moseley, J.C. Mather, D. McCammon et al., Thermal detectors as X-ray spectrometers. J. Appl. Phys. 56, 1257 (1984). https://doi.org/10.1063/1.334129

    Article  ADS  Google Scholar 

  40. D. McCammon, Thermal equilibrium calorimeters—an introduction. Cryogenic particle detection, Topics Appl. Phys.99. Chapter.1 (Springer, Berlin, Heidelberg), 1–34 (2005). https://doi.org/10.1007/10933596_1

  41. D. McCammon, Semiconductor thermistors. Cryogenic particle detection, Topics Appl. Phys.99. Chapter.2 (Springer, Berlin, Heidelberg), 35–62 (2005). https://doi.org/10.1007/10933596_2

  42. A. Fleischmann, C. Enss, G.M. Seidel, Metallic magnetic calorimeters. Cryogenic particle detection, Topics Appl. Phys.99. Chapter.4 (Springer, Berlin, Heidelberg), 151–216 (2005). https://doi.org/10.1007/10933596_4

  43. M.P. Croce, M.W. Rabin, V. Mocko et al., Development of holmium-163 electron-capture spectroscopy with transition-edge sensors. J. Low Temp. Phys. 184, 958–968 (2016). https://doi.org/10.1007/s10909-015-1451-2

    Article  ADS  Google Scholar 

  44. J.D. Eschweiler, A superconducting microcalorimeter for low-flux detection of near-infrared single photons. PHD. Dissertation (Hamburg: University of Hamburg), (2014). https://doi.org/10.3204/DESY-THESIS-2014-016

  45. Y. Li, W.D. Huang, J.P. Zeng et al., The level structure of \({^{76}\text{ Se }}\) from \({^{76}\text{ Br }}\)\(\gamma\)-decay. Nucl. Sci. Tech. 9(4), 199–208 (1998). http://www.nst.sinap.ac.cn/thesisDetails?columnId=6566287 &Fpath=home &index=0 &lang=enweb link

  46. W.F. Yang, Z.Z. Zhao, W.T. Mu et al., New gamma rays from decay of \({^{189}\text{ W }}\). Nucl. Sci. Tech. 6(4), 222–224 (1995). http://www.nst.sinap.ac.cn/thesisDetails?columnId=6553865 &Fpath=home &index=0 &lang=enweb link

  47. J.X. Chen, Z.M Shi, X.L. Huang et al., Measurements of fast-neutron capture cross sections for \({^{159}\text{ Tb }}\) and \({^{169}\text{ Tm }}\). Nucl. Sci. Tech. 9(3), 138–141 (1998). http://www.nst.sinap.ac.cn/thesisDetails?columnId=6565959 &Fpath=home &index=0 &lang=enweb link

  48. J. McAndrew, S. Paul et al., Bound beta-decay of the free neutron: BoB. Physics Procedia 51, 37 (2014). https://www.sciencedirect.com/science/article/pii/S1875389213006974https://doi.org/10.1016/j.phpro.2013.12.009

Download references

Author information

Authors and Affiliations

Authors

Contributions

Shuo Zhang contributed to the study of conception, system design and construction. Data collection and analysis were performed by Jing-Kai Xia, Bing-Jun Wu. Material design, selection and preparation were performed by Tao Sun, Ke Han, Wen-Tao Wu, Yong-Liang Wang, Xiao-Peng Zhou, Hao-Ran Liu, Fu-You Fan, Si-Ming Guo, Jun-Cheng Liang, De-Hong Li, Yan-Ru Song, Xu-Dong Ju and Qiang Fu. The first draft of the manuscript was written by Shuo Zhang and all authors commented on previous versions of the manuscript. Zhi Liu contributed to the review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuo Zhang.

Additional information

This work was supported by the National major scientific research instrument development project (No.11927805), National Natural Science Foundation of China Young Scientists Fund (No. 12005134), Shanghai-XFEL Beamline Project (SBP) (No. 31011505505885920161A2101001), Shanghai Municipal Science and Technology Major Project (No.2017SHZDZX02), and Shanghai Pujiang Program (No. 20PJ1410900).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xia, JK., Sun, T. et al. Transition edge sensor-based detector: from X-ray to \(\gamma\)-ray. NUCL SCI TECH 33, 84 (2022). https://doi.org/10.1007/s41365-022-01071-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01071-5

Keywords

Navigation